ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsslnid GIF version

Theorem setsslnid 12670
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
Hypotheses
Ref Expression
setsslid.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
setsslnid.n (𝐸‘ndx) ≠ 𝐷
setsslnid.d 𝐷 ∈ ℕ
Assertion
Ref Expression
setsslnid ((𝑊𝐴𝐶𝑉) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))

Proof of Theorem setsslnid
StepHypRef Expression
1 setsslnid.d . . . . 5 𝐷 ∈ ℕ
2 setsresg 12656 . . . . 5 ((𝑊𝐴𝐷 ∈ ℕ ∧ 𝐶𝑉) → ((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷})))
31, 2mp3an2 1336 . . . 4 ((𝑊𝐴𝐶𝑉) → ((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷})))
43fveq1d 5556 . . 3 ((𝑊𝐴𝐶𝑉) → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)))
5 setsslid.e . . . . . . 7 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
65simpri 113 . . . . . 6 (𝐸‘ndx) ∈ ℕ
76elexi 2772 . . . . 5 (𝐸‘ndx) ∈ V
8 setsslnid.n . . . . 5 (𝐸‘ndx) ≠ 𝐷
9 eldifsn 3745 . . . . 5 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷))
107, 8, 9mpbir2an 944 . . . 4 (𝐸‘ndx) ∈ (V ∖ {𝐷})
11 fvres 5578 . . . 4 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)))
1210, 11ax-mp 5 . . 3 (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx))
13 fvres 5578 . . . 4 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
1410, 13ax-mp 5 . . 3 ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))
154, 12, 143eqtr3g 2249 . 2 ((𝑊𝐴𝐶𝑉) → ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
165simpli 111 . . 3 𝐸 = Slot (𝐸‘ndx)
17 setsex 12650 . . . 4 ((𝑊𝐴𝐷 ∈ ℕ ∧ 𝐶𝑉) → (𝑊 sSet ⟨𝐷, 𝐶⟩) ∈ V)
181, 17mp3an2 1336 . . 3 ((𝑊𝐴𝐶𝑉) → (𝑊 sSet ⟨𝐷, 𝐶⟩) ∈ V)
196a1i 9 . . 3 ((𝑊𝐴𝐶𝑉) → (𝐸‘ndx) ∈ ℕ)
2016, 18, 19strnfvnd 12638 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)))
21 simpl 109 . . 3 ((𝑊𝐴𝐶𝑉) → 𝑊𝐴)
2216, 21, 19strnfvnd 12638 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸𝑊) = (𝑊‘(𝐸‘ndx)))
2315, 20, 223eqtr4rd 2237 1 ((𝑊𝐴𝐶𝑉) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wne 2364  Vcvv 2760  cdif 3150  {csn 3618  cop 3621  cres 4661  cfv 5254  (class class class)co 5918  cn 8982  ndxcnx 12615   sSet csts 12616  Slot cslot 12617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-slot 12622  df-sets 12625
This theorem is referenced by:  resseqnbasd  12691  mgpbasg  13422  mgpscag  13423  mgptsetg  13424  mgpdsg  13426  opprsllem  13570  rmodislmod  13847  sralemg  13934  srascag  13938  sravscag  13939  zlmlemg  14116  zlmsca  14120  znbaslemnn  14127  setsmsbasg  14647  setsmsdsg  14648
  Copyright terms: Public domain W3C validator