| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsslnid | GIF version | ||
| Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.) |
| Ref | Expression |
|---|---|
| setsslid.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| setsslnid.n | ⊢ (𝐸‘ndx) ≠ 𝐷 |
| setsslnid.d | ⊢ 𝐷 ∈ ℕ |
| Ref | Expression |
|---|---|
| setsslnid | ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsslnid.d | . . . . 5 ⊢ 𝐷 ∈ ℕ | |
| 2 | setsresg 13078 | . . . . 5 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐷 ∈ ℕ ∧ 𝐶 ∈ 𝑉) → ((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷}))) | |
| 3 | 1, 2 | mp3an2 1359 | . . . 4 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → ((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷}))) |
| 4 | 3 | fveq1d 5631 | . . 3 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx))) |
| 5 | setsslid.e | . . . . . . 7 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 6 | 5 | simpri 113 | . . . . . 6 ⊢ (𝐸‘ndx) ∈ ℕ |
| 7 | 6 | elexi 2812 | . . . . 5 ⊢ (𝐸‘ndx) ∈ V |
| 8 | setsslnid.n | . . . . 5 ⊢ (𝐸‘ndx) ≠ 𝐷 | |
| 9 | eldifsn 3795 | . . . . 5 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷)) | |
| 10 | 7, 8, 9 | mpbir2an 948 | . . . 4 ⊢ (𝐸‘ndx) ∈ (V ∖ {𝐷}) |
| 11 | fvres 5653 | . . . 4 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx))) | |
| 12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) |
| 13 | fvres 5653 | . . . 4 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) | |
| 14 | 10, 13 | ax-mp 5 | . . 3 ⊢ ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)) |
| 15 | 4, 12, 14 | 3eqtr3g 2285 | . 2 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) |
| 16 | 5 | simpli 111 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 17 | setsex 13072 | . . . 4 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐷 ∈ ℕ ∧ 𝐶 ∈ 𝑉) → (𝑊 sSet 〈𝐷, 𝐶〉) ∈ V) | |
| 18 | 1, 17 | mp3an2 1359 | . . 3 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝑊 sSet 〈𝐷, 𝐶〉) ∈ V) |
| 19 | 6 | a1i 9 | . . 3 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘ndx) ∈ ℕ) |
| 20 | 16, 18, 19 | strnfvnd 13060 | . 2 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx))) |
| 21 | simpl 109 | . . 3 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝑊 ∈ 𝐴) | |
| 22 | 16, 21, 19 | strnfvnd 13060 | . 2 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘𝑊) = (𝑊‘(𝐸‘ndx))) |
| 23 | 15, 20, 22 | 3eqtr4rd 2273 | 1 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 Vcvv 2799 ∖ cdif 3194 {csn 3666 〈cop 3669 ↾ cres 4721 ‘cfv 5318 (class class class)co 6007 ℕcn 9118 ndxcnx 13037 sSet csts 13038 Slot cslot 13039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-slot 13044 df-sets 13047 |
| This theorem is referenced by: resseqnbasd 13114 mgpbasg 13897 mgpscag 13898 mgptsetg 13899 mgpdsg 13901 opprsllem 14045 rmodislmod 14323 sralemg 14410 srascag 14414 sravscag 14415 zlmlemg 14600 zlmsca 14604 znbaslemnn 14611 setsmsbasg 15161 setsmsdsg 15162 setsvtx 15860 |
| Copyright terms: Public domain | W3C validator |