ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsslnid GIF version

Theorem setsslnid 13092
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
Hypotheses
Ref Expression
setsslid.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
setsslnid.n (𝐸‘ndx) ≠ 𝐷
setsslnid.d 𝐷 ∈ ℕ
Assertion
Ref Expression
setsslnid ((𝑊𝐴𝐶𝑉) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))

Proof of Theorem setsslnid
StepHypRef Expression
1 setsslnid.d . . . . 5 𝐷 ∈ ℕ
2 setsresg 13078 . . . . 5 ((𝑊𝐴𝐷 ∈ ℕ ∧ 𝐶𝑉) → ((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷})))
31, 2mp3an2 1359 . . . 4 ((𝑊𝐴𝐶𝑉) → ((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷})))
43fveq1d 5631 . . 3 ((𝑊𝐴𝐶𝑉) → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)))
5 setsslid.e . . . . . . 7 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
65simpri 113 . . . . . 6 (𝐸‘ndx) ∈ ℕ
76elexi 2812 . . . . 5 (𝐸‘ndx) ∈ V
8 setsslnid.n . . . . 5 (𝐸‘ndx) ≠ 𝐷
9 eldifsn 3795 . . . . 5 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷))
107, 8, 9mpbir2an 948 . . . 4 (𝐸‘ndx) ∈ (V ∖ {𝐷})
11 fvres 5653 . . . 4 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)))
1210, 11ax-mp 5 . . 3 (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx))
13 fvres 5653 . . . 4 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
1410, 13ax-mp 5 . . 3 ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))
154, 12, 143eqtr3g 2285 . 2 ((𝑊𝐴𝐶𝑉) → ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
165simpli 111 . . 3 𝐸 = Slot (𝐸‘ndx)
17 setsex 13072 . . . 4 ((𝑊𝐴𝐷 ∈ ℕ ∧ 𝐶𝑉) → (𝑊 sSet ⟨𝐷, 𝐶⟩) ∈ V)
181, 17mp3an2 1359 . . 3 ((𝑊𝐴𝐶𝑉) → (𝑊 sSet ⟨𝐷, 𝐶⟩) ∈ V)
196a1i 9 . . 3 ((𝑊𝐴𝐶𝑉) → (𝐸‘ndx) ∈ ℕ)
2016, 18, 19strnfvnd 13060 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)))
21 simpl 109 . . 3 ((𝑊𝐴𝐶𝑉) → 𝑊𝐴)
2216, 21, 19strnfvnd 13060 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸𝑊) = (𝑊‘(𝐸‘ndx)))
2315, 20, 223eqtr4rd 2273 1 ((𝑊𝐴𝐶𝑉) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wne 2400  Vcvv 2799  cdif 3194  {csn 3666  cop 3669  cres 4721  cfv 5318  (class class class)co 6007  cn 9118  ndxcnx 13037   sSet csts 13038  Slot cslot 13039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-slot 13044  df-sets 13047
This theorem is referenced by:  resseqnbasd  13114  mgpbasg  13897  mgpscag  13898  mgptsetg  13899  mgpdsg  13901  opprsllem  14045  rmodislmod  14323  sralemg  14410  srascag  14414  sravscag  14415  zlmlemg  14600  zlmsca  14604  znbaslemnn  14611  setsmsbasg  15161  setsmsdsg  15162  setsvtx  15860
  Copyright terms: Public domain W3C validator