Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsslnid | GIF version |
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.) |
Ref | Expression |
---|---|
setsslid.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
setsslnid.n | ⊢ (𝐸‘ndx) ≠ 𝐷 |
setsslnid.d | ⊢ 𝐷 ∈ ℕ |
Ref | Expression |
---|---|
setsslnid | ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsslnid.d | . . . . 5 ⊢ 𝐷 ∈ ℕ | |
2 | setsresg 12432 | . . . . 5 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐷 ∈ ℕ ∧ 𝐶 ∈ 𝑉) → ((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷}))) | |
3 | 1, 2 | mp3an2 1315 | . . . 4 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → ((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷}))) |
4 | 3 | fveq1d 5488 | . . 3 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx))) |
5 | setsslid.e | . . . . . . 7 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
6 | 5 | simpri 112 | . . . . . 6 ⊢ (𝐸‘ndx) ∈ ℕ |
7 | 6 | elexi 2738 | . . . . 5 ⊢ (𝐸‘ndx) ∈ V |
8 | setsslnid.n | . . . . 5 ⊢ (𝐸‘ndx) ≠ 𝐷 | |
9 | eldifsn 3703 | . . . . 5 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷)) | |
10 | 7, 8, 9 | mpbir2an 932 | . . . 4 ⊢ (𝐸‘ndx) ∈ (V ∖ {𝐷}) |
11 | fvres 5510 | . . . 4 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx))) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) |
13 | fvres 5510 | . . . 4 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) | |
14 | 10, 13 | ax-mp 5 | . . 3 ⊢ ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)) |
15 | 4, 12, 14 | 3eqtr3g 2222 | . 2 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) |
16 | 5 | simpli 110 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
17 | setsex 12426 | . . . 4 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐷 ∈ ℕ ∧ 𝐶 ∈ 𝑉) → (𝑊 sSet 〈𝐷, 𝐶〉) ∈ V) | |
18 | 1, 17 | mp3an2 1315 | . . 3 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝑊 sSet 〈𝐷, 𝐶〉) ∈ V) |
19 | 6 | a1i 9 | . . 3 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘ndx) ∈ ℕ) |
20 | 16, 18, 19 | strnfvnd 12414 | . 2 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx))) |
21 | simpl 108 | . . 3 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝑊 ∈ 𝐴) | |
22 | 16, 21, 19 | strnfvnd 12414 | . 2 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘𝑊) = (𝑊‘(𝐸‘ndx))) |
23 | 15, 20, 22 | 3eqtr4rd 2209 | 1 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ≠ wne 2336 Vcvv 2726 ∖ cdif 3113 {csn 3576 〈cop 3579 ↾ cres 4606 ‘cfv 5188 (class class class)co 5842 ℕcn 8857 ndxcnx 12391 sSet csts 12392 Slot cslot 12393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-slot 12398 df-sets 12401 |
This theorem is referenced by: setsmsbasg 13129 setsmsdsg 13130 |
Copyright terms: Public domain | W3C validator |