ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsslnid GIF version

Theorem setsslnid 12445
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
Hypotheses
Ref Expression
setsslid.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
setsslnid.n (𝐸‘ndx) ≠ 𝐷
setsslnid.d 𝐷 ∈ ℕ
Assertion
Ref Expression
setsslnid ((𝑊𝐴𝐶𝑉) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))

Proof of Theorem setsslnid
StepHypRef Expression
1 setsslnid.d . . . . 5 𝐷 ∈ ℕ
2 setsresg 12432 . . . . 5 ((𝑊𝐴𝐷 ∈ ℕ ∧ 𝐶𝑉) → ((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷})))
31, 2mp3an2 1315 . . . 4 ((𝑊𝐴𝐶𝑉) → ((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷})))
43fveq1d 5488 . . 3 ((𝑊𝐴𝐶𝑉) → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)))
5 setsslid.e . . . . . . 7 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
65simpri 112 . . . . . 6 (𝐸‘ndx) ∈ ℕ
76elexi 2738 . . . . 5 (𝐸‘ndx) ∈ V
8 setsslnid.n . . . . 5 (𝐸‘ndx) ≠ 𝐷
9 eldifsn 3703 . . . . 5 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷))
107, 8, 9mpbir2an 932 . . . 4 (𝐸‘ndx) ∈ (V ∖ {𝐷})
11 fvres 5510 . . . 4 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)))
1210, 11ax-mp 5 . . 3 (((𝑊 sSet ⟨𝐷, 𝐶⟩) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx))
13 fvres 5510 . . . 4 ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
1410, 13ax-mp 5 . . 3 ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))
154, 12, 143eqtr3g 2222 . 2 ((𝑊𝐴𝐶𝑉) → ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)))
165simpli 110 . . 3 𝐸 = Slot (𝐸‘ndx)
17 setsex 12426 . . . 4 ((𝑊𝐴𝐷 ∈ ℕ ∧ 𝐶𝑉) → (𝑊 sSet ⟨𝐷, 𝐶⟩) ∈ V)
181, 17mp3an2 1315 . . 3 ((𝑊𝐴𝐶𝑉) → (𝑊 sSet ⟨𝐷, 𝐶⟩) ∈ V)
196a1i 9 . . 3 ((𝑊𝐴𝐶𝑉) → (𝐸‘ndx) ∈ ℕ)
2016, 18, 19strnfvnd 12414 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)) = ((𝑊 sSet ⟨𝐷, 𝐶⟩)‘(𝐸‘ndx)))
21 simpl 108 . . 3 ((𝑊𝐴𝐶𝑉) → 𝑊𝐴)
2216, 21, 19strnfvnd 12414 . 2 ((𝑊𝐴𝐶𝑉) → (𝐸𝑊) = (𝑊‘(𝐸‘ndx)))
2315, 20, 223eqtr4rd 2209 1 ((𝑊𝐴𝐶𝑉) → (𝐸𝑊) = (𝐸‘(𝑊 sSet ⟨𝐷, 𝐶⟩)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wne 2336  Vcvv 2726  cdif 3113  {csn 3576  cop 3579  cres 4606  cfv 5188  (class class class)co 5842  cn 8857  ndxcnx 12391   sSet csts 12392  Slot cslot 12393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-slot 12398  df-sets 12401
This theorem is referenced by:  setsmsbasg  13129  setsmsdsg  13130
  Copyright terms: Public domain W3C validator