Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsslnid | GIF version |
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.) |
Ref | Expression |
---|---|
setsslid.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
setsslnid.n | ⊢ (𝐸‘ndx) ≠ 𝐷 |
setsslnid.d | ⊢ 𝐷 ∈ ℕ |
Ref | Expression |
---|---|
setsslnid | ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsslnid.d | . . . . 5 ⊢ 𝐷 ∈ ℕ | |
2 | setsresg 12454 | . . . . 5 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐷 ∈ ℕ ∧ 𝐶 ∈ 𝑉) → ((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷}))) | |
3 | 1, 2 | mp3an2 1320 | . . . 4 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → ((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷}))) |
4 | 3 | fveq1d 5498 | . . 3 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx))) |
5 | setsslid.e | . . . . . . 7 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
6 | 5 | simpri 112 | . . . . . 6 ⊢ (𝐸‘ndx) ∈ ℕ |
7 | 6 | elexi 2742 | . . . . 5 ⊢ (𝐸‘ndx) ∈ V |
8 | setsslnid.n | . . . . 5 ⊢ (𝐸‘ndx) ≠ 𝐷 | |
9 | eldifsn 3710 | . . . . 5 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷)) | |
10 | 7, 8, 9 | mpbir2an 937 | . . . 4 ⊢ (𝐸‘ndx) ∈ (V ∖ {𝐷}) |
11 | fvres 5520 | . . . 4 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx))) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) |
13 | fvres 5520 | . . . 4 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) | |
14 | 10, 13 | ax-mp 5 | . . 3 ⊢ ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)) |
15 | 4, 12, 14 | 3eqtr3g 2226 | . 2 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) |
16 | 5 | simpli 110 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
17 | setsex 12448 | . . . 4 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐷 ∈ ℕ ∧ 𝐶 ∈ 𝑉) → (𝑊 sSet 〈𝐷, 𝐶〉) ∈ V) | |
18 | 1, 17 | mp3an2 1320 | . . 3 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝑊 sSet 〈𝐷, 𝐶〉) ∈ V) |
19 | 6 | a1i 9 | . . 3 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘ndx) ∈ ℕ) |
20 | 16, 18, 19 | strnfvnd 12436 | . 2 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx))) |
21 | simpl 108 | . . 3 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝑊 ∈ 𝐴) | |
22 | 16, 21, 19 | strnfvnd 12436 | . 2 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘𝑊) = (𝑊‘(𝐸‘ndx))) |
23 | 15, 20, 22 | 3eqtr4rd 2214 | 1 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 Vcvv 2730 ∖ cdif 3118 {csn 3583 〈cop 3586 ↾ cres 4613 ‘cfv 5198 (class class class)co 5853 ℕcn 8878 ndxcnx 12413 sSet csts 12414 Slot cslot 12415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-slot 12420 df-sets 12423 |
This theorem is referenced by: setsmsbasg 13273 setsmsdsg 13274 |
Copyright terms: Public domain | W3C validator |