Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsslnid | GIF version |
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.) |
Ref | Expression |
---|---|
setsslid.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
setsslnid.n | ⊢ (𝐸‘ndx) ≠ 𝐷 |
setsslnid.d | ⊢ 𝐷 ∈ ℕ |
Ref | Expression |
---|---|
setsslnid | ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsslnid.d | . . . . 5 ⊢ 𝐷 ∈ ℕ | |
2 | setsresg 12465 | . . . . 5 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐷 ∈ ℕ ∧ 𝐶 ∈ 𝑉) → ((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷}))) | |
3 | 1, 2 | mp3an2 1325 | . . . 4 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → ((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷})) = (𝑊 ↾ (V ∖ {𝐷}))) |
4 | 3 | fveq1d 5509 | . . 3 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx))) |
5 | setsslid.e | . . . . . . 7 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
6 | 5 | simpri 113 | . . . . . 6 ⊢ (𝐸‘ndx) ∈ ℕ |
7 | 6 | elexi 2747 | . . . . 5 ⊢ (𝐸‘ndx) ∈ V |
8 | setsslnid.n | . . . . 5 ⊢ (𝐸‘ndx) ≠ 𝐷 | |
9 | eldifsn 3716 | . . . . 5 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) ↔ ((𝐸‘ndx) ∈ V ∧ (𝐸‘ndx) ≠ 𝐷)) | |
10 | 7, 8, 9 | mpbir2an 942 | . . . 4 ⊢ (𝐸‘ndx) ∈ (V ∖ {𝐷}) |
11 | fvres 5531 | . . . 4 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx))) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ (((𝑊 sSet 〈𝐷, 𝐶〉) ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) |
13 | fvres 5531 | . . . 4 ⊢ ((𝐸‘ndx) ∈ (V ∖ {𝐷}) → ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) | |
14 | 10, 13 | ax-mp 5 | . . 3 ⊢ ((𝑊 ↾ (V ∖ {𝐷}))‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx)) |
15 | 4, 12, 14 | 3eqtr3g 2231 | . 2 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx)) = (𝑊‘(𝐸‘ndx))) |
16 | 5 | simpli 111 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
17 | setsex 12459 | . . . 4 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐷 ∈ ℕ ∧ 𝐶 ∈ 𝑉) → (𝑊 sSet 〈𝐷, 𝐶〉) ∈ V) | |
18 | 1, 17 | mp3an2 1325 | . . 3 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝑊 sSet 〈𝐷, 𝐶〉) ∈ V) |
19 | 6 | a1i 9 | . . 3 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘ndx) ∈ ℕ) |
20 | 16, 18, 19 | strnfvnd 12447 | . 2 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉)) = ((𝑊 sSet 〈𝐷, 𝐶〉)‘(𝐸‘ndx))) |
21 | simpl 109 | . . 3 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝑊 ∈ 𝐴) | |
22 | 16, 21, 19 | strnfvnd 12447 | . 2 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘𝑊) = (𝑊‘(𝐸‘ndx))) |
23 | 15, 20, 22 | 3eqtr4rd 2219 | 1 ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ≠ wne 2345 Vcvv 2735 ∖ cdif 3124 {csn 3589 〈cop 3592 ↾ cres 4622 ‘cfv 5208 (class class class)co 5865 ℕcn 8890 ndxcnx 12424 sSet csts 12425 Slot cslot 12426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-slot 12431 df-sets 12434 |
This theorem is referenced by: mgpbasg 12930 mgpscag 12931 mgptsetg 12932 mgpdsg 12934 setsmsbasg 13530 setsmsdsg 13531 |
Copyright terms: Public domain | W3C validator |