![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 5t2e10 | GIF version |
Description: 5 times 2 equals 10. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
5t2e10 | ⊢ (5 · 2) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn0 9209 | . 2 ⊢ 5 ∈ ℕ0 | |
2 | 1nn0 9205 | . 2 ⊢ 1 ∈ ℕ0 | |
3 | df-2 8991 | . 2 ⊢ 2 = (1 + 1) | |
4 | 5cn 9012 | . . 3 ⊢ 5 ∈ ℂ | |
5 | 4 | mulid1i 7972 | . 2 ⊢ (5 · 1) = 5 |
6 | 5p5e10 9467 | . 2 ⊢ (5 + 5) = ;10 | |
7 | 1, 2, 3, 5, 6 | 4t3lem 9493 | 1 ⊢ (5 · 2) = ;10 |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 (class class class)co 5888 0cc0 7824 1c1 7825 · cmul 7829 2c2 8983 5c5 8986 ;cdc 9397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-sep 4133 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-mulcom 7925 ax-addass 7926 ax-mulass 7927 ax-distr 7928 ax-1rid 7931 ax-0id 7932 ax-rnegex 7933 ax-cnre 7935 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-iota 5190 df-fv 5236 df-ov 5891 df-inn 8933 df-2 8991 df-3 8992 df-4 8993 df-5 8994 df-6 8995 df-7 8996 df-8 8997 df-9 8998 df-n0 9190 df-dec 9398 |
This theorem is referenced by: 5t3e15 9497 ex-fac 14751 |
Copyright terms: Public domain | W3C validator |