| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 5p5e10 | GIF version | ||
| Description: 5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 5p5e10 | ⊢ (5 + 5) = ;10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 9098 | . . . 4 ⊢ 5 = (4 + 1) | |
| 2 | 1 | oveq2i 5955 | . . 3 ⊢ (5 + 5) = (5 + (4 + 1)) |
| 3 | 5cn 9116 | . . . 4 ⊢ 5 ∈ ℂ | |
| 4 | 4cn 9114 | . . . 4 ⊢ 4 ∈ ℂ | |
| 5 | ax-1cn 8018 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 8080 | . . 3 ⊢ ((5 + 4) + 1) = (5 + (4 + 1)) |
| 7 | 2, 6 | eqtr4i 2229 | . 2 ⊢ (5 + 5) = ((5 + 4) + 1) |
| 8 | 5p4e9 9185 | . . 3 ⊢ (5 + 4) = 9 | |
| 9 | 8 | oveq1i 5954 | . 2 ⊢ ((5 + 4) + 1) = (9 + 1) |
| 10 | 9p1e10 9506 | . 2 ⊢ (9 + 1) = ;10 | |
| 11 | 7, 9, 10 | 3eqtri 2230 | 1 ⊢ (5 + 5) = ;10 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5944 0cc0 7925 1c1 7926 + caddc 7928 4c4 9089 5c5 9090 9c9 9094 ;cdc 9504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-1rid 8032 ax-0id 8033 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 df-dec 9505 |
| This theorem is referenced by: 5t2e10 9603 5t4e20 9605 |
| Copyright terms: Public domain | W3C validator |