![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 5p5e10 | GIF version |
Description: 5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
5p5e10 | ⊢ (5 + 5) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8984 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq2i 5889 | . . 3 ⊢ (5 + 5) = (5 + (4 + 1)) |
3 | 5cn 9002 | . . . 4 ⊢ 5 ∈ ℂ | |
4 | 4cn 9000 | . . . 4 ⊢ 4 ∈ ℂ | |
5 | ax-1cn 7907 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 7968 | . . 3 ⊢ ((5 + 4) + 1) = (5 + (4 + 1)) |
7 | 2, 6 | eqtr4i 2201 | . 2 ⊢ (5 + 5) = ((5 + 4) + 1) |
8 | 5p4e9 9070 | . . 3 ⊢ (5 + 4) = 9 | |
9 | 8 | oveq1i 5888 | . 2 ⊢ ((5 + 4) + 1) = (9 + 1) |
10 | 9p1e10 9389 | . 2 ⊢ (9 + 1) = ;10 | |
11 | 7, 9, 10 | 3eqtri 2202 | 1 ⊢ (5 + 5) = ;10 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 (class class class)co 5878 0cc0 7814 1c1 7815 + caddc 7817 4c4 8975 5c5 8976 9c9 8980 ;cdc 9387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-sep 4123 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-1rid 7921 ax-0id 7922 ax-cnre 7925 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5881 df-inn 8923 df-2 8981 df-3 8982 df-4 8983 df-5 8984 df-6 8985 df-7 8986 df-8 8987 df-9 8988 df-dec 9388 |
This theorem is referenced by: 5t2e10 9486 5t4e20 9488 |
Copyright terms: Public domain | W3C validator |