ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5p5e10 GIF version

Theorem 5p5e10 9574
Description: 5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
5p5e10 (5 + 5) = 10

Proof of Theorem 5p5e10
StepHypRef Expression
1 df-5 9098 . . . 4 5 = (4 + 1)
21oveq2i 5955 . . 3 (5 + 5) = (5 + (4 + 1))
3 5cn 9116 . . . 4 5 ∈ ℂ
4 4cn 9114 . . . 4 4 ∈ ℂ
5 ax-1cn 8018 . . . 4 1 ∈ ℂ
63, 4, 5addassi 8080 . . 3 ((5 + 4) + 1) = (5 + (4 + 1))
72, 6eqtr4i 2229 . 2 (5 + 5) = ((5 + 4) + 1)
8 5p4e9 9185 . . 3 (5 + 4) = 9
98oveq1i 5954 . 2 ((5 + 4) + 1) = (9 + 1)
10 9p1e10 9506 . 2 (9 + 1) = 10
117, 9, 103eqtri 2230 1 (5 + 5) = 10
Colors of variables: wff set class
Syntax hints:   = wceq 1373  (class class class)co 5944  0cc0 7925  1c1 7926   + caddc 7928  4c4 9089  5c5 9090  9c9 9094  cdc 9504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4162  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-1rid 8032  ax-0id 8033  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-dec 9505
This theorem is referenced by:  5t2e10  9603  5t4e20  9605
  Copyright terms: Public domain W3C validator