![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 5p5e10 | GIF version |
Description: 5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
5p5e10 | ⊢ (5 + 5) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 9046 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq2i 5930 | . . 3 ⊢ (5 + 5) = (5 + (4 + 1)) |
3 | 5cn 9064 | . . . 4 ⊢ 5 ∈ ℂ | |
4 | 4cn 9062 | . . . 4 ⊢ 4 ∈ ℂ | |
5 | ax-1cn 7967 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 8029 | . . 3 ⊢ ((5 + 4) + 1) = (5 + (4 + 1)) |
7 | 2, 6 | eqtr4i 2217 | . 2 ⊢ (5 + 5) = ((5 + 4) + 1) |
8 | 5p4e9 9133 | . . 3 ⊢ (5 + 4) = 9 | |
9 | 8 | oveq1i 5929 | . 2 ⊢ ((5 + 4) + 1) = (9 + 1) |
10 | 9p1e10 9453 | . 2 ⊢ (9 + 1) = ;10 | |
11 | 7, 9, 10 | 3eqtri 2218 | 1 ⊢ (5 + 5) = ;10 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5919 0cc0 7874 1c1 7875 + caddc 7877 4c4 9037 5c5 9038 9c9 9042 ;cdc 9451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-1rid 7981 ax-0id 7982 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-dec 9452 |
This theorem is referenced by: 5t2e10 9550 5t4e20 9552 |
Copyright terms: Public domain | W3C validator |