Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 5p3e8 | GIF version |
Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p3e8 | ⊢ (5 + 3) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8917 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 5853 | . . 3 ⊢ (5 + 3) = (5 + (2 + 1)) |
3 | 5cn 8937 | . . . 4 ⊢ 5 ∈ ℂ | |
4 | 2cn 8928 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 7846 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 7907 | . . 3 ⊢ ((5 + 2) + 1) = (5 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2189 | . 2 ⊢ (5 + 3) = ((5 + 2) + 1) |
8 | df-8 8922 | . . 3 ⊢ 8 = (7 + 1) | |
9 | 5p2e7 9003 | . . . 4 ⊢ (5 + 2) = 7 | |
10 | 9 | oveq1i 5852 | . . 3 ⊢ ((5 + 2) + 1) = (7 + 1) |
11 | 8, 10 | eqtr4i 2189 | . 2 ⊢ 8 = ((5 + 2) + 1) |
12 | 7, 11 | eqtr4i 2189 | 1 ⊢ (5 + 3) = 8 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5842 1c1 7754 + caddc 7756 2c2 8908 3c3 8909 5c5 8911 7c7 8913 8c8 8914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-addrcl 7850 ax-addass 7855 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 |
This theorem is referenced by: 5p4e9 9005 ef01bndlem 11697 lgsdir2lem1 13569 |
Copyright terms: Public domain | W3C validator |