ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5p3e8 GIF version

Theorem 5p3e8 9184
Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
5p3e8 (5 + 3) = 8

Proof of Theorem 5p3e8
StepHypRef Expression
1 df-3 9096 . . . 4 3 = (2 + 1)
21oveq2i 5955 . . 3 (5 + 3) = (5 + (2 + 1))
3 5cn 9116 . . . 4 5 ∈ ℂ
4 2cn 9107 . . . 4 2 ∈ ℂ
5 ax-1cn 8018 . . . 4 1 ∈ ℂ
63, 4, 5addassi 8080 . . 3 ((5 + 2) + 1) = (5 + (2 + 1))
72, 6eqtr4i 2229 . 2 (5 + 3) = ((5 + 2) + 1)
8 df-8 9101 . . 3 8 = (7 + 1)
9 5p2e7 9183 . . . 4 (5 + 2) = 7
109oveq1i 5954 . . 3 ((5 + 2) + 1) = (7 + 1)
118, 10eqtr4i 2229 . 2 8 = ((5 + 2) + 1)
127, 11eqtr4i 2229 1 (5 + 3) = 8
Colors of variables: wff set class
Syntax hints:   = wceq 1373  (class class class)co 5944  1c1 7926   + caddc 7928  2c2 9087  3c3 9088  5c5 9090  7c7 9092  8c8 9093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-addrcl 8022  ax-addass 8027
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101
This theorem is referenced by:  5p4e9  9185  ef01bndlem  12067  2exp16  12760  lgsdir2lem1  15505
  Copyright terms: Public domain W3C validator