ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5p3e8 GIF version

Theorem 5p3e8 9258
Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
5p3e8 (5 + 3) = 8

Proof of Theorem 5p3e8
StepHypRef Expression
1 df-3 9170 . . . 4 3 = (2 + 1)
21oveq2i 6012 . . 3 (5 + 3) = (5 + (2 + 1))
3 5cn 9190 . . . 4 5 ∈ ℂ
4 2cn 9181 . . . 4 2 ∈ ℂ
5 ax-1cn 8092 . . . 4 1 ∈ ℂ
63, 4, 5addassi 8154 . . 3 ((5 + 2) + 1) = (5 + (2 + 1))
72, 6eqtr4i 2253 . 2 (5 + 3) = ((5 + 2) + 1)
8 df-8 9175 . . 3 8 = (7 + 1)
9 5p2e7 9257 . . . 4 (5 + 2) = 7
109oveq1i 6011 . . 3 ((5 + 2) + 1) = (7 + 1)
118, 10eqtr4i 2253 . 2 8 = ((5 + 2) + 1)
127, 11eqtr4i 2253 1 (5 + 3) = 8
Colors of variables: wff set class
Syntax hints:   = wceq 1395  (class class class)co 6001  1c1 8000   + caddc 8002  2c2 9161  3c3 9162  5c5 9164  7c7 9166  8c8 9167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-addrcl 8096  ax-addass 8101
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175
This theorem is referenced by:  5p4e9  9259  ef01bndlem  12267  2exp16  12960  lgsdir2lem1  15707
  Copyright terms: Public domain W3C validator