ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5p3e8 GIF version

Theorem 5p3e8 8533
Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
5p3e8 (5 + 3) = 8

Proof of Theorem 5p3e8
StepHypRef Expression
1 df-3 8453 . . . 4 3 = (2 + 1)
21oveq2i 5645 . . 3 (5 + 3) = (5 + (2 + 1))
3 5cn 8473 . . . 4 5 ∈ ℂ
4 2cn 8464 . . . 4 2 ∈ ℂ
5 ax-1cn 7417 . . . 4 1 ∈ ℂ
63, 4, 5addassi 7475 . . 3 ((5 + 2) + 1) = (5 + (2 + 1))
72, 6eqtr4i 2111 . 2 (5 + 3) = ((5 + 2) + 1)
8 df-8 8458 . . 3 8 = (7 + 1)
9 5p2e7 8532 . . . 4 (5 + 2) = 7
109oveq1i 5644 . . 3 ((5 + 2) + 1) = (7 + 1)
118, 10eqtr4i 2111 . 2 8 = ((5 + 2) + 1)
127, 11eqtr4i 2111 1 (5 + 3) = 8
Colors of variables: wff set class
Syntax hints:   = wceq 1289  (class class class)co 5634  1c1 7330   + caddc 7332  2c2 8444  3c3 8445  5c5 8447  7c7 8449  8c8 8450
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-addrcl 7421  ax-addass 7426
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-iota 4967  df-fv 5010  df-ov 5637  df-2 8452  df-3 8453  df-4 8454  df-5 8455  df-6 8456  df-7 8457  df-8 8458
This theorem is referenced by:  5p4e9  8534
  Copyright terms: Public domain W3C validator