| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 5p3e8 | GIF version | ||
| Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 5p3e8 | ⊢ (5 + 3) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9053 | . . . 4 ⊢ 3 = (2 + 1) | |
| 2 | 1 | oveq2i 5934 | . . 3 ⊢ (5 + 3) = (5 + (2 + 1)) |
| 3 | 5cn 9073 | . . . 4 ⊢ 5 ∈ ℂ | |
| 4 | 2cn 9064 | . . . 4 ⊢ 2 ∈ ℂ | |
| 5 | ax-1cn 7975 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 8037 | . . 3 ⊢ ((5 + 2) + 1) = (5 + (2 + 1)) |
| 7 | 2, 6 | eqtr4i 2220 | . 2 ⊢ (5 + 3) = ((5 + 2) + 1) |
| 8 | df-8 9058 | . . 3 ⊢ 8 = (7 + 1) | |
| 9 | 5p2e7 9140 | . . . 4 ⊢ (5 + 2) = 7 | |
| 10 | 9 | oveq1i 5933 | . . 3 ⊢ ((5 + 2) + 1) = (7 + 1) |
| 11 | 8, 10 | eqtr4i 2220 | . 2 ⊢ 8 = ((5 + 2) + 1) |
| 12 | 7, 11 | eqtr4i 2220 | 1 ⊢ (5 + 3) = 8 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5923 1c1 7883 + caddc 7885 2c2 9044 3c3 9045 5c5 9047 7c7 9049 8c8 9050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-addrcl 7979 ax-addass 7984 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5926 df-2 9052 df-3 9053 df-4 9054 df-5 9055 df-6 9056 df-7 9057 df-8 9058 |
| This theorem is referenced by: 5p4e9 9142 ef01bndlem 11924 2exp16 12617 lgsdir2lem1 15295 |
| Copyright terms: Public domain | W3C validator |