ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5p3e8 GIF version

Theorem 5p3e8 9219
Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
5p3e8 (5 + 3) = 8

Proof of Theorem 5p3e8
StepHypRef Expression
1 df-3 9131 . . . 4 3 = (2 + 1)
21oveq2i 5978 . . 3 (5 + 3) = (5 + (2 + 1))
3 5cn 9151 . . . 4 5 ∈ ℂ
4 2cn 9142 . . . 4 2 ∈ ℂ
5 ax-1cn 8053 . . . 4 1 ∈ ℂ
63, 4, 5addassi 8115 . . 3 ((5 + 2) + 1) = (5 + (2 + 1))
72, 6eqtr4i 2231 . 2 (5 + 3) = ((5 + 2) + 1)
8 df-8 9136 . . 3 8 = (7 + 1)
9 5p2e7 9218 . . . 4 (5 + 2) = 7
109oveq1i 5977 . . 3 ((5 + 2) + 1) = (7 + 1)
118, 10eqtr4i 2231 . 2 8 = ((5 + 2) + 1)
127, 11eqtr4i 2231 1 (5 + 3) = 8
Colors of variables: wff set class
Syntax hints:   = wceq 1373  (class class class)co 5967  1c1 7961   + caddc 7963  2c2 9122  3c3 9123  5c5 9125  7c7 9127  8c8 9128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-addrcl 8057  ax-addass 8062
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136
This theorem is referenced by:  5p4e9  9220  ef01bndlem  12182  2exp16  12875  lgsdir2lem1  15620
  Copyright terms: Public domain W3C validator