ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5p3e8 GIF version

Theorem 5p3e8 9141
Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
5p3e8 (5 + 3) = 8

Proof of Theorem 5p3e8
StepHypRef Expression
1 df-3 9053 . . . 4 3 = (2 + 1)
21oveq2i 5934 . . 3 (5 + 3) = (5 + (2 + 1))
3 5cn 9073 . . . 4 5 ∈ ℂ
4 2cn 9064 . . . 4 2 ∈ ℂ
5 ax-1cn 7975 . . . 4 1 ∈ ℂ
63, 4, 5addassi 8037 . . 3 ((5 + 2) + 1) = (5 + (2 + 1))
72, 6eqtr4i 2220 . 2 (5 + 3) = ((5 + 2) + 1)
8 df-8 9058 . . 3 8 = (7 + 1)
9 5p2e7 9140 . . . 4 (5 + 2) = 7
109oveq1i 5933 . . 3 ((5 + 2) + 1) = (7 + 1)
118, 10eqtr4i 2220 . 2 8 = ((5 + 2) + 1)
127, 11eqtr4i 2220 1 (5 + 3) = 8
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5923  1c1 7883   + caddc 7885  2c2 9044  3c3 9045  5c5 9047  7c7 9049  8c8 9050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-addrcl 7979  ax-addass 7984
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5926  df-2 9052  df-3 9053  df-4 9054  df-5 9055  df-6 9056  df-7 9057  df-8 9058
This theorem is referenced by:  5p4e9  9142  ef01bndlem  11924  2exp16  12617  lgsdir2lem1  15295
  Copyright terms: Public domain W3C validator