ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5p3e8 GIF version

Theorem 5p3e8 9079
Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
5p3e8 (5 + 3) = 8

Proof of Theorem 5p3e8
StepHypRef Expression
1 df-3 8992 . . . 4 3 = (2 + 1)
21oveq2i 5899 . . 3 (5 + 3) = (5 + (2 + 1))
3 5cn 9012 . . . 4 5 ∈ ℂ
4 2cn 9003 . . . 4 2 ∈ ℂ
5 ax-1cn 7917 . . . 4 1 ∈ ℂ
63, 4, 5addassi 7978 . . 3 ((5 + 2) + 1) = (5 + (2 + 1))
72, 6eqtr4i 2211 . 2 (5 + 3) = ((5 + 2) + 1)
8 df-8 8997 . . 3 8 = (7 + 1)
9 5p2e7 9078 . . . 4 (5 + 2) = 7
109oveq1i 5898 . . 3 ((5 + 2) + 1) = (7 + 1)
118, 10eqtr4i 2211 . 2 8 = ((5 + 2) + 1)
127, 11eqtr4i 2211 1 (5 + 3) = 8
Colors of variables: wff set class
Syntax hints:   = wceq 1363  (class class class)co 5888  1c1 7825   + caddc 7827  2c2 8983  3c3 8984  5c5 8986  7c7 8988  8c8 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-addrcl 7921  ax-addass 7926
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-iota 5190  df-fv 5236  df-ov 5891  df-2 8991  df-3 8992  df-4 8993  df-5 8994  df-6 8995  df-7 8996  df-8 8997
This theorem is referenced by:  5p4e9  9080  ef01bndlem  11777  lgsdir2lem1  14700
  Copyright terms: Public domain W3C validator