ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5p3e8 GIF version

Theorem 5p3e8 9183
Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
5p3e8 (5 + 3) = 8

Proof of Theorem 5p3e8
StepHypRef Expression
1 df-3 9095 . . . 4 3 = (2 + 1)
21oveq2i 5954 . . 3 (5 + 3) = (5 + (2 + 1))
3 5cn 9115 . . . 4 5 ∈ ℂ
4 2cn 9106 . . . 4 2 ∈ ℂ
5 ax-1cn 8017 . . . 4 1 ∈ ℂ
63, 4, 5addassi 8079 . . 3 ((5 + 2) + 1) = (5 + (2 + 1))
72, 6eqtr4i 2228 . 2 (5 + 3) = ((5 + 2) + 1)
8 df-8 9100 . . 3 8 = (7 + 1)
9 5p2e7 9182 . . . 4 (5 + 2) = 7
109oveq1i 5953 . . 3 ((5 + 2) + 1) = (7 + 1)
118, 10eqtr4i 2228 . 2 8 = ((5 + 2) + 1)
127, 11eqtr4i 2228 1 (5 + 3) = 8
Colors of variables: wff set class
Syntax hints:   = wceq 1372  (class class class)co 5943  1c1 7925   + caddc 7927  2c2 9086  3c3 9087  5c5 9089  7c7 9091  8c8 9092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-addrcl 8021  ax-addass 8026
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5231  df-fv 5278  df-ov 5946  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100
This theorem is referenced by:  5p4e9  9184  ef01bndlem  12038  2exp16  12731  lgsdir2lem1  15476
  Copyright terms: Public domain W3C validator