![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 5p3e8 | GIF version |
Description: 5 + 3 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p3e8 | ⊢ (5 + 3) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8992 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 5899 | . . 3 ⊢ (5 + 3) = (5 + (2 + 1)) |
3 | 5cn 9012 | . . . 4 ⊢ 5 ∈ ℂ | |
4 | 2cn 9003 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 7917 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 7978 | . . 3 ⊢ ((5 + 2) + 1) = (5 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2211 | . 2 ⊢ (5 + 3) = ((5 + 2) + 1) |
8 | df-8 8997 | . . 3 ⊢ 8 = (7 + 1) | |
9 | 5p2e7 9078 | . . . 4 ⊢ (5 + 2) = 7 | |
10 | 9 | oveq1i 5898 | . . 3 ⊢ ((5 + 2) + 1) = (7 + 1) |
11 | 8, 10 | eqtr4i 2211 | . 2 ⊢ 8 = ((5 + 2) + 1) |
12 | 7, 11 | eqtr4i 2211 | 1 ⊢ (5 + 3) = 8 |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 (class class class)co 5888 1c1 7825 + caddc 7827 2c2 8983 3c3 8984 5c5 8986 7c7 8988 8c8 8989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-addrcl 7921 ax-addass 7926 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-iota 5190 df-fv 5236 df-ov 5891 df-2 8991 df-3 8992 df-4 8993 df-5 8994 df-6 8995 df-7 8996 df-8 8997 |
This theorem is referenced by: 5p4e9 9080 ef01bndlem 11777 lgsdir2lem1 14700 |
Copyright terms: Public domain | W3C validator |