ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5p4e9 GIF version

Theorem 5p4e9 9069
Description: 5 + 4 = 9. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
5p4e9 (5 + 4) = 9

Proof of Theorem 5p4e9
StepHypRef Expression
1 df-4 8982 . . . 4 4 = (3 + 1)
21oveq2i 5888 . . 3 (5 + 4) = (5 + (3 + 1))
3 5cn 9001 . . . 4 5 ∈ ℂ
4 3cn 8996 . . . 4 3 ∈ ℂ
5 ax-1cn 7906 . . . 4 1 ∈ ℂ
63, 4, 5addassi 7967 . . 3 ((5 + 3) + 1) = (5 + (3 + 1))
72, 6eqtr4i 2201 . 2 (5 + 4) = ((5 + 3) + 1)
8 df-9 8987 . . 3 9 = (8 + 1)
9 5p3e8 9068 . . . 4 (5 + 3) = 8
109oveq1i 5887 . . 3 ((5 + 3) + 1) = (8 + 1)
118, 10eqtr4i 2201 . 2 9 = ((5 + 3) + 1)
127, 11eqtr4i 2201 1 (5 + 4) = 9
Colors of variables: wff set class
Syntax hints:   = wceq 1353  (class class class)co 5877  1c1 7814   + caddc 7816  3c3 8973  4c4 8974  5c5 8975  8c8 8978  9c9 8979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-addrcl 7910  ax-addass 7915
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-9 8987
This theorem is referenced by:  5p5e10  9456
  Copyright terms: Public domain W3C validator