| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgsoddprmlem1 | GIF version | ||
| Description: Lemma 1 for 2lgsoddprm . (Contributed by AV, 19-Jul-2021.) |
| Ref | Expression |
|---|---|
| 2lgsoddprmlem1 | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 = ((8 · 𝐴) + 𝐵)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 1) / 8))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5941 | . . . . 5 ⊢ (𝑁 = ((8 · 𝐴) + 𝐵) → (𝑁↑2) = (((8 · 𝐴) + 𝐵)↑2)) | |
| 2 | 1 | 3ad2ant3 1022 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 = ((8 · 𝐴) + 𝐵)) → (𝑁↑2) = (((8 · 𝐴) + 𝐵)↑2)) |
| 3 | 2 | oveq1d 5949 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 = ((8 · 𝐴) + 𝐵)) → ((𝑁↑2) − 1) = ((((8 · 𝐴) + 𝐵)↑2) − 1)) |
| 4 | 3 | oveq1d 5949 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 = ((8 · 𝐴) + 𝐵)) → (((𝑁↑2) − 1) / 8) = (((((8 · 𝐴) + 𝐵)↑2) − 1) / 8)) |
| 5 | zcn 9359 | . . . . 5 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℂ) |
| 7 | zcn 9359 | . . . . 5 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℂ) | |
| 8 | 7 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ) |
| 9 | 1cnd 8070 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 1 ∈ ℂ) | |
| 10 | 8cn 9104 | . . . . . 6 ⊢ 8 ∈ ℂ | |
| 11 | 8re 9103 | . . . . . . 7 ⊢ 8 ∈ ℝ | |
| 12 | 8pos 9121 | . . . . . . 7 ⊢ 0 < 8 | |
| 13 | 11, 12 | gt0ap0ii 8683 | . . . . . 6 ⊢ 8 # 0 |
| 14 | 10, 13 | pm3.2i 272 | . . . . 5 ⊢ (8 ∈ ℂ ∧ 8 # 0) |
| 15 | 14 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (8 ∈ ℂ ∧ 8 # 0)) |
| 16 | mulsubdivbinom2ap 10837 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (8 ∈ ℂ ∧ 8 # 0)) → (((((8 · 𝐴) + 𝐵)↑2) − 1) / 8) = (((8 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 1) / 8))) | |
| 17 | 6, 8, 9, 15, 16 | syl31anc 1252 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((((8 · 𝐴) + 𝐵)↑2) − 1) / 8) = (((8 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 1) / 8))) |
| 18 | 17 | 3adant3 1019 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 = ((8 · 𝐴) + 𝐵)) → (((((8 · 𝐴) + 𝐵)↑2) − 1) / 8) = (((8 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 1) / 8))) |
| 19 | 4, 18 | eqtrd 2237 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 = ((8 · 𝐴) + 𝐵)) → (((𝑁↑2) − 1) / 8) = (((8 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 1) / 8))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 (class class class)co 5934 ℂcc 7905 0cc0 7907 1c1 7908 + caddc 7910 · cmul 7912 − cmin 8225 # cap 8636 / cdiv 8727 2c2 9069 8c8 9075 ℤcz 9354 ↑cexp 10664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-7 9082 df-8 9083 df-n0 9278 df-z 9355 df-uz 9631 df-seqfrec 10574 df-exp 10665 |
| This theorem is referenced by: 2lgsoddprmlem2 15501 |
| Copyright terms: Public domain | W3C validator |