ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8p2e10 GIF version

Theorem 8p2e10 9603
Description: 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
8p2e10 (8 + 2) = 10

Proof of Theorem 8p2e10
StepHypRef Expression
1 df-2 9115 . . . 4 2 = (1 + 1)
21oveq2i 5968 . . 3 (8 + 2) = (8 + (1 + 1))
3 8cn 9142 . . . 4 8 ∈ ℂ
4 ax-1cn 8038 . . . 4 1 ∈ ℂ
53, 4, 4addassi 8100 . . 3 ((8 + 1) + 1) = (8 + (1 + 1))
62, 5eqtr4i 2230 . 2 (8 + 2) = ((8 + 1) + 1)
7 df-9 9122 . . 3 9 = (8 + 1)
87oveq1i 5967 . 2 (9 + 1) = ((8 + 1) + 1)
9 9p1e10 9526 . 2 (9 + 1) = 10
106, 8, 93eqtr2i 2233 1 (8 + 2) = 10
Colors of variables: wff set class
Syntax hints:   = wceq 1373  (class class class)co 5957  0cc0 7945  1c1 7946   + caddc 7948  2c2 9107  8c8 9113  9c9 9114  cdc 9524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-sep 4170  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-1rid 8052  ax-0id 8053  ax-cnre 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-iota 5241  df-fv 5288  df-ov 5960  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-9 9122  df-dec 9525
This theorem is referenced by:  8p3e11  9604  8t5e40  9641
  Copyright terms: Public domain W3C validator