| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8p2e10 | GIF version | ||
| Description: 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 8p2e10 | ⊢ (8 + 2) = ;10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9115 | . . . 4 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 5968 | . . 3 ⊢ (8 + 2) = (8 + (1 + 1)) |
| 3 | 8cn 9142 | . . . 4 ⊢ 8 ∈ ℂ | |
| 4 | ax-1cn 8038 | . . . 4 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 8100 | . . 3 ⊢ ((8 + 1) + 1) = (8 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2230 | . 2 ⊢ (8 + 2) = ((8 + 1) + 1) |
| 7 | df-9 9122 | . . 3 ⊢ 9 = (8 + 1) | |
| 8 | 7 | oveq1i 5967 | . 2 ⊢ (9 + 1) = ((8 + 1) + 1) |
| 9 | 9p1e10 9526 | . 2 ⊢ (9 + 1) = ;10 | |
| 10 | 6, 8, 9 | 3eqtr2i 2233 | 1 ⊢ (8 + 2) = ;10 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5957 0cc0 7945 1c1 7946 + caddc 7948 2c2 9107 8c8 9113 9c9 9114 ;cdc 9524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-1rid 8052 ax-0id 8053 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-dec 9525 |
| This theorem is referenced by: 8p3e11 9604 8t5e40 9641 |
| Copyright terms: Public domain | W3C validator |