ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8p2e10 GIF version

Theorem 8p2e10 9368
Description: 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
8p2e10 (8 + 2) = 10

Proof of Theorem 8p2e10
StepHypRef Expression
1 df-2 8886 . . . 4 2 = (1 + 1)
21oveq2i 5832 . . 3 (8 + 2) = (8 + (1 + 1))
3 8cn 8913 . . . 4 8 ∈ ℂ
4 ax-1cn 7819 . . . 4 1 ∈ ℂ
53, 4, 4addassi 7880 . . 3 ((8 + 1) + 1) = (8 + (1 + 1))
62, 5eqtr4i 2181 . 2 (8 + 2) = ((8 + 1) + 1)
7 df-9 8893 . . 3 9 = (8 + 1)
87oveq1i 5831 . 2 (9 + 1) = ((8 + 1) + 1)
9 9p1e10 9291 . 2 (9 + 1) = 10
106, 8, 93eqtr2i 2184 1 (8 + 2) = 10
Colors of variables: wff set class
Syntax hints:   = wceq 1335  (class class class)co 5821  0cc0 7726  1c1 7727   + caddc 7729  2c2 8878  8c8 8884  9c9 8885  cdc 9289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-sep 4082  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-1rid 7833  ax-0id 7834  ax-cnre 7837
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-iota 5134  df-fv 5177  df-ov 5824  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-5 8889  df-6 8890  df-7 8891  df-8 8892  df-9 8893  df-dec 9290
This theorem is referenced by:  8p3e11  9369  8t5e40  9406
  Copyright terms: Public domain W3C validator