| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8p2e10 | GIF version | ||
| Description: 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 8p2e10 | ⊢ (8 + 2) = ;10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9049 | . . . 4 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 5933 | . . 3 ⊢ (8 + 2) = (8 + (1 + 1)) |
| 3 | 8cn 9076 | . . . 4 ⊢ 8 ∈ ℂ | |
| 4 | ax-1cn 7972 | . . . 4 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 8034 | . . 3 ⊢ ((8 + 1) + 1) = (8 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2220 | . 2 ⊢ (8 + 2) = ((8 + 1) + 1) |
| 7 | df-9 9056 | . . 3 ⊢ 9 = (8 + 1) | |
| 8 | 7 | oveq1i 5932 | . 2 ⊢ (9 + 1) = ((8 + 1) + 1) |
| 9 | 9p1e10 9459 | . 2 ⊢ (9 + 1) = ;10 | |
| 10 | 6, 8, 9 | 3eqtr2i 2223 | 1 ⊢ (8 + 2) = ;10 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5922 0cc0 7879 1c1 7880 + caddc 7882 2c2 9041 8c8 9047 9c9 9048 ;cdc 9457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-1rid 7986 ax-0id 7987 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-dec 9458 |
| This theorem is referenced by: 8p3e11 9537 8t5e40 9574 |
| Copyright terms: Public domain | W3C validator |