Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 8p2e10 | GIF version |
Description: 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
8p2e10 | ⊢ (8 + 2) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8886 | . . . 4 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 5832 | . . 3 ⊢ (8 + 2) = (8 + (1 + 1)) |
3 | 8cn 8913 | . . . 4 ⊢ 8 ∈ ℂ | |
4 | ax-1cn 7819 | . . . 4 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 7880 | . . 3 ⊢ ((8 + 1) + 1) = (8 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2181 | . 2 ⊢ (8 + 2) = ((8 + 1) + 1) |
7 | df-9 8893 | . . 3 ⊢ 9 = (8 + 1) | |
8 | 7 | oveq1i 5831 | . 2 ⊢ (9 + 1) = ((8 + 1) + 1) |
9 | 9p1e10 9291 | . 2 ⊢ (9 + 1) = ;10 | |
10 | 6, 8, 9 | 3eqtr2i 2184 | 1 ⊢ (8 + 2) = ;10 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 (class class class)co 5821 0cc0 7726 1c1 7727 + caddc 7729 2c2 8878 8c8 8884 9c9 8885 ;cdc 9289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4082 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-1rid 7833 ax-0id 7834 ax-cnre 7837 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-iota 5134 df-fv 5177 df-ov 5824 df-inn 8828 df-2 8886 df-3 8887 df-4 8888 df-5 8889 df-6 8890 df-7 8891 df-8 8892 df-9 8893 df-dec 9290 |
This theorem is referenced by: 8p3e11 9369 8t5e40 9406 |
Copyright terms: Public domain | W3C validator |