ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addpipqqs GIF version

Theorem addpipqqs 7490
Description: Addition of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.)
Assertion
Ref Expression
addpipqqs (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q +Q [⟨𝐶, 𝐷⟩] ~Q ) = [⟨((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)), (𝐵 ·N 𝐷)⟩] ~Q )

Proof of Theorem addpipqqs
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑡 𝑠 𝑓 𝑔 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addpipqqslem 7489 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ⟨((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)), (𝐵 ·N 𝐷)⟩ ∈ (N × N))
2 addpipqqslem 7489 . 2 (((𝑎N𝑏N) ∧ (𝑔NN)) → ⟨((𝑎 ·N ) +N (𝑏 ·N 𝑔)), (𝑏 ·N )⟩ ∈ (N × N))
3 addpipqqslem 7489 . 2 (((𝑐N𝑑N) ∧ (𝑡N𝑠N)) → ⟨((𝑐 ·N 𝑠) +N (𝑑 ·N 𝑡)), (𝑑 ·N 𝑠)⟩ ∈ (N × N))
4 enqex 7480 . 2 ~Q ∈ V
5 enqer 7478 . 2 ~Q Er (N × N)
6 df-enq 7467 . 2 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
7 oveq12 5960 . . . 4 ((𝑧 = 𝑎𝑢 = 𝑑) → (𝑧 ·N 𝑢) = (𝑎 ·N 𝑑))
8 oveq12 5960 . . . 4 ((𝑤 = 𝑏𝑣 = 𝑐) → (𝑤 ·N 𝑣) = (𝑏 ·N 𝑐))
97, 8eqeqan12d 2222 . . 3 (((𝑧 = 𝑎𝑢 = 𝑑) ∧ (𝑤 = 𝑏𝑣 = 𝑐)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑎 ·N 𝑑) = (𝑏 ·N 𝑐)))
109an42s 589 . 2 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑎 ·N 𝑑) = (𝑏 ·N 𝑐)))
11 oveq12 5960 . . . 4 ((𝑧 = 𝑔𝑢 = 𝑠) → (𝑧 ·N 𝑢) = (𝑔 ·N 𝑠))
12 oveq12 5960 . . . 4 ((𝑤 = 𝑣 = 𝑡) → (𝑤 ·N 𝑣) = ( ·N 𝑡))
1311, 12eqeqan12d 2222 . . 3 (((𝑧 = 𝑔𝑢 = 𝑠) ∧ (𝑤 = 𝑣 = 𝑡)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑔 ·N 𝑠) = ( ·N 𝑡)))
1413an42s 589 . 2 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑔 ·N 𝑠) = ( ·N 𝑡)))
15 dfplpq2 7474 . 2 +pQ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩))}
16 oveq12 5960 . . . . 5 ((𝑤 = 𝑎𝑓 = ) → (𝑤 ·N 𝑓) = (𝑎 ·N ))
17 oveq12 5960 . . . . 5 ((𝑣 = 𝑏𝑢 = 𝑔) → (𝑣 ·N 𝑢) = (𝑏 ·N 𝑔))
1816, 17oveqan12d 5970 . . . 4 (((𝑤 = 𝑎𝑓 = ) ∧ (𝑣 = 𝑏𝑢 = 𝑔)) → ((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)) = ((𝑎 ·N ) +N (𝑏 ·N 𝑔)))
1918an42s 589 . . 3 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → ((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)) = ((𝑎 ·N ) +N (𝑏 ·N 𝑔)))
20 oveq12 5960 . . . 4 ((𝑣 = 𝑏𝑓 = ) → (𝑣 ·N 𝑓) = (𝑏 ·N ))
2120ad2ant2l 508 . . 3 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → (𝑣 ·N 𝑓) = (𝑏 ·N ))
2219, 21opeq12d 3829 . 2 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩ = ⟨((𝑎 ·N ) +N (𝑏 ·N 𝑔)), (𝑏 ·N )⟩)
23 oveq12 5960 . . . . 5 ((𝑤 = 𝑐𝑓 = 𝑠) → (𝑤 ·N 𝑓) = (𝑐 ·N 𝑠))
24 oveq12 5960 . . . . 5 ((𝑣 = 𝑑𝑢 = 𝑡) → (𝑣 ·N 𝑢) = (𝑑 ·N 𝑡))
2523, 24oveqan12d 5970 . . . 4 (((𝑤 = 𝑐𝑓 = 𝑠) ∧ (𝑣 = 𝑑𝑢 = 𝑡)) → ((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)) = ((𝑐 ·N 𝑠) +N (𝑑 ·N 𝑡)))
2625an42s 589 . . 3 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → ((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)) = ((𝑐 ·N 𝑠) +N (𝑑 ·N 𝑡)))
27 oveq12 5960 . . . 4 ((𝑣 = 𝑑𝑓 = 𝑠) → (𝑣 ·N 𝑓) = (𝑑 ·N 𝑠))
2827ad2ant2l 508 . . 3 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → (𝑣 ·N 𝑓) = (𝑑 ·N 𝑠))
2926, 28opeq12d 3829 . 2 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩ = ⟨((𝑐 ·N 𝑠) +N (𝑑 ·N 𝑡)), (𝑑 ·N 𝑠)⟩)
30 oveq12 5960 . . . . 5 ((𝑤 = 𝐴𝑓 = 𝐷) → (𝑤 ·N 𝑓) = (𝐴 ·N 𝐷))
31 oveq12 5960 . . . . 5 ((𝑣 = 𝐵𝑢 = 𝐶) → (𝑣 ·N 𝑢) = (𝐵 ·N 𝐶))
3230, 31oveqan12d 5970 . . . 4 (((𝑤 = 𝐴𝑓 = 𝐷) ∧ (𝑣 = 𝐵𝑢 = 𝐶)) → ((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)) = ((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)))
3332an42s 589 . . 3 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)) = ((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)))
34 oveq12 5960 . . . 4 ((𝑣 = 𝐵𝑓 = 𝐷) → (𝑣 ·N 𝑓) = (𝐵 ·N 𝐷))
3534ad2ant2l 508 . . 3 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → (𝑣 ·N 𝑓) = (𝐵 ·N 𝐷))
3633, 35opeq12d 3829 . 2 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩ = ⟨((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)), (𝐵 ·N 𝐷)⟩)
37 df-plqqs 7469 . 2 +Q = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] ~Q𝑦 = [⟨𝑐, 𝑑⟩] ~Q ) ∧ 𝑧 = [(⟨𝑎, 𝑏⟩ +pQ𝑐, 𝑑⟩)] ~Q ))}
38 df-nqqs 7468 . 2 Q = ((N × N) / ~Q )
39 addcmpblnq 7487 . 2 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N)) ∧ ((𝑔NN) ∧ (𝑡N𝑠N))) → (((𝑎 ·N 𝑑) = (𝑏 ·N 𝑐) ∧ (𝑔 ·N 𝑠) = ( ·N 𝑡)) → ⟨((𝑎 ·N ) +N (𝑏 ·N 𝑔)), (𝑏 ·N )⟩ ~Q ⟨((𝑐 ·N 𝑠) +N (𝑑 ·N 𝑡)), (𝑑 ·N 𝑠)⟩))
401, 2, 3, 4, 5, 6, 10, 14, 15, 22, 29, 36, 37, 38, 39oviec 6735 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q +Q [⟨𝐶, 𝐷⟩] ~Q ) = [⟨((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)), (𝐵 ·N 𝐷)⟩] ~Q )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  cop 3637  (class class class)co 5951  [cec 6625  Ncnpi 7392   +N cpli 7393   ·N cmi 7394   +pQ cplpq 7396   ~Q ceq 7399  Qcnq 7400   +Q cplq 7402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-pli 7425  df-mi 7426  df-plpq 7464  df-enq 7467  df-nqqs 7468  df-plqqs 7469
This theorem is referenced by:  addclnq  7495  addcomnqg  7501  addassnqg  7502  distrnqg  7507  ltanqg  7520  1lt2nq  7526  ltexnqq  7528  nqnq0a  7574  addpinq1  7584
  Copyright terms: Public domain W3C validator