Step | Hyp | Ref
| Expression |
1 | | df-nqqs 7299 |
. . 3
⊢
Q = ((N × N) /
~Q ) |
2 | | oveq1 5858 |
. . . 4
⊢
([〈𝑥, 𝑦〉]
~Q = 𝐴 → ([〈𝑥, 𝑦〉] ~Q
+Q [〈𝑧, 𝑤〉] ~Q ) =
(𝐴
+Q [〈𝑧, 𝑤〉] ~Q
)) |
3 | 2 | eleq1d 2239 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~Q = 𝐴 → (([〈𝑥, 𝑦〉] ~Q
+Q [〈𝑧, 𝑤〉] ~Q ) ∈
((N × N) / ~Q
) ↔ (𝐴
+Q [〈𝑧, 𝑤〉] ~Q ) ∈
((N × N) / ~Q
))) |
4 | | oveq2 5859 |
. . . 4
⊢
([〈𝑧, 𝑤〉]
~Q = 𝐵 → (𝐴 +Q [〈𝑧, 𝑤〉] ~Q ) =
(𝐴
+Q 𝐵)) |
5 | 4 | eleq1d 2239 |
. . 3
⊢
([〈𝑧, 𝑤〉]
~Q = 𝐵 → ((𝐴 +Q [〈𝑧, 𝑤〉] ~Q ) ∈
((N × N) / ~Q
) ↔ (𝐴
+Q 𝐵) ∈ ((N ×
N) / ~Q ))) |
6 | | addpipqqs 7321 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → ([〈𝑥, 𝑦〉] ~Q
+Q [〈𝑧, 𝑤〉] ~Q ) =
[〈((𝑥
·N 𝑤) +N (𝑦
·N 𝑧)), (𝑦 ·N 𝑤)〉]
~Q ) |
7 | | mulclpi 7279 |
. . . . . . . 8
⊢ ((𝑥 ∈ N ∧
𝑤 ∈ N)
→ (𝑥
·N 𝑤) ∈ N) |
8 | | mulclpi 7279 |
. . . . . . . 8
⊢ ((𝑦 ∈ N ∧
𝑧 ∈ N)
→ (𝑦
·N 𝑧) ∈ N) |
9 | | addclpi 7278 |
. . . . . . . 8
⊢ (((𝑥
·N 𝑤) ∈ N ∧ (𝑦
·N 𝑧) ∈ N) → ((𝑥
·N 𝑤) +N (𝑦
·N 𝑧)) ∈ N) |
10 | 7, 8, 9 | syl2an 287 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑤 ∈ N)
∧ (𝑦 ∈
N ∧ 𝑧
∈ N)) → ((𝑥 ·N 𝑤) +N
(𝑦
·N 𝑧)) ∈ N) |
11 | 10 | an42s 584 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → ((𝑥 ·N 𝑤) +N
(𝑦
·N 𝑧)) ∈ N) |
12 | | mulclpi 7279 |
. . . . . . 7
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N)
→ (𝑦
·N 𝑤) ∈ N) |
13 | 12 | ad2ant2l 505 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → (𝑦 ·N 𝑤) ∈
N) |
14 | 11, 13 | jca 304 |
. . . . 5
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → (((𝑥 ·N 𝑤) +N
(𝑦
·N 𝑧)) ∈ N ∧ (𝑦
·N 𝑤) ∈ N)) |
15 | | opelxpi 4641 |
. . . . 5
⊢ ((((𝑥
·N 𝑤) +N (𝑦
·N 𝑧)) ∈ N ∧ (𝑦
·N 𝑤) ∈ N) →
〈((𝑥
·N 𝑤) +N (𝑦
·N 𝑧)), (𝑦 ·N 𝑤)〉 ∈ (N
× N)) |
16 | | enqex 7311 |
. . . . . 6
⊢
~Q ∈ V |
17 | 16 | ecelqsi 6564 |
. . . . 5
⊢
(〈((𝑥
·N 𝑤) +N (𝑦
·N 𝑧)), (𝑦 ·N 𝑤)〉 ∈ (N
× N) → [〈((𝑥 ·N 𝑤) +N
(𝑦
·N 𝑧)), (𝑦 ·N 𝑤)〉]
~Q ∈ ((N × N)
/ ~Q )) |
18 | 14, 15, 17 | 3syl 17 |
. . . 4
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → [〈((𝑥 ·N 𝑤) +N
(𝑦
·N 𝑧)), (𝑦 ·N 𝑤)〉]
~Q ∈ ((N × N)
/ ~Q )) |
19 | 6, 18 | eqeltrd 2247 |
. . 3
⊢ (((𝑥 ∈ N ∧
𝑦 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → ([〈𝑥, 𝑦〉] ~Q
+Q [〈𝑧, 𝑤〉] ~Q ) ∈
((N × N) / ~Q
)) |
20 | 1, 3, 5, 19 | 2ecoptocl 6598 |
. 2
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (𝐴
+Q 𝐵) ∈ ((N ×
N) / ~Q )) |
21 | 20, 1 | eleqtrrdi 2264 |
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (𝐴
+Q 𝐵) ∈ Q) |