ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addclnq GIF version

Theorem addclnq 7435
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.)
Assertion
Ref Expression
addclnq ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)

Proof of Theorem addclnq
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7408 . . 3 Q = ((N × N) / ~Q )
2 oveq1 5925 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = (𝐴 +Q [⟨𝑧, 𝑤⟩] ~Q ))
32eleq1d 2262 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ) ↔ (𝐴 +Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q )))
4 oveq2 5926 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (𝐴 +Q [⟨𝑧, 𝑤⟩] ~Q ) = (𝐴 +Q 𝐵))
54eleq1d 2262 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ((𝐴 +Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ) ↔ (𝐴 +Q 𝐵) ∈ ((N × N) / ~Q )))
6 addpipqqs 7430 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q )
7 mulclpi 7388 . . . . . . . 8 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
8 mulclpi 7388 . . . . . . . 8 ((𝑦N𝑧N) → (𝑦 ·N 𝑧) ∈ N)
9 addclpi 7387 . . . . . . . 8 (((𝑥 ·N 𝑤) ∈ N ∧ (𝑦 ·N 𝑧) ∈ N) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
107, 8, 9syl2an 289 . . . . . . 7 (((𝑥N𝑤N) ∧ (𝑦N𝑧N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
1110an42s 589 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
12 mulclpi 7388 . . . . . . 7 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
1312ad2ant2l 508 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑤) ∈ N)
1411, 13jca 306 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
15 opelxpi 4691 . . . . 5 ((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N) → ⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩ ∈ (N × N))
16 enqex 7420 . . . . . 6 ~Q ∈ V
1716ecelqsi 6643 . . . . 5 (⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩ ∈ (N × N) → [⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
1814, 15, 173syl 17 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → [⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
196, 18eqeltrd 2270 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ))
201, 3, 5, 192ecoptocl 6677 . 2 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ ((N × N) / ~Q ))
2120, 1eleqtrrdi 2287 1 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cop 3621   × cxp 4657  (class class class)co 5918  [cec 6585   / cqs 6586  Ncnpi 7332   +N cpli 7333   ·N cmi 7334   ~Q ceq 7339  Qcnq 7340   +Q cplq 7342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-plpq 7404  df-enq 7407  df-nqqs 7408  df-plqqs 7409
This theorem is referenced by:  ltaddnq  7467  halfnqq  7470  ltbtwnnqq  7475  prarloclemcalc  7562  addnqprl  7589  addnqpru  7590  addlocprlemeqgt  7592  addlocprlemgt  7594  addlocprlem  7595  addclpr  7597  plpvlu  7598  dmplp  7600  addnqprlemrl  7617  addnqprlemru  7618  addnqprlemfl  7619  addnqprlemfu  7620  addnqpr  7621  addassprg  7639  distrlem1prl  7642  distrlem1pru  7643  distrlem4prl  7644  distrlem4pru  7645  distrlem5prl  7646  distrlem5pru  7647  ltaddpr  7657  ltexprlemloc  7667  ltexprlemfl  7669  ltexprlemrl  7670  ltexprlemfu  7671  ltexprlemru  7672  addcanprleml  7674  addcanprlemu  7675  recexprlemm  7684  aptiprleml  7699  aptiprlemu  7700  caucvgprlemcanl  7704  cauappcvgprlemm  7705  cauappcvgprlemdisj  7711  cauappcvgprlemloc  7712  cauappcvgprlemladdfu  7714  cauappcvgprlemladdfl  7715  cauappcvgprlemladdru  7716  cauappcvgprlemladdrl  7717  cauappcvgprlem1  7719  cauappcvgprlem2  7720  caucvgprlemnkj  7726  caucvgprlemnbj  7727  caucvgprlemm  7728  caucvgprlemloc  7735  caucvgprlemladdfu  7737  caucvgprlemladdrl  7738  caucvgprlem2  7740  caucvgprprlemloccalc  7744  caucvgprprlemml  7754  caucvgprprlemmu  7755  caucvgprprlemopl  7757  caucvgprprlemloc  7763  suplocexprlemmu  7778
  Copyright terms: Public domain W3C validator