ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addclnq GIF version

Theorem addclnq 7459
Description: Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.)
Assertion
Ref Expression
addclnq ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)

Proof of Theorem addclnq
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7432 . . 3 Q = ((N × N) / ~Q )
2 oveq1 5932 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = (𝐴 +Q [⟨𝑧, 𝑤⟩] ~Q ))
32eleq1d 2265 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ) ↔ (𝐴 +Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q )))
4 oveq2 5933 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (𝐴 +Q [⟨𝑧, 𝑤⟩] ~Q ) = (𝐴 +Q 𝐵))
54eleq1d 2265 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ((𝐴 +Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ) ↔ (𝐴 +Q 𝐵) ∈ ((N × N) / ~Q )))
6 addpipqqs 7454 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q )
7 mulclpi 7412 . . . . . . . 8 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) ∈ N)
8 mulclpi 7412 . . . . . . . 8 ((𝑦N𝑧N) → (𝑦 ·N 𝑧) ∈ N)
9 addclpi 7411 . . . . . . . 8 (((𝑥 ·N 𝑤) ∈ N ∧ (𝑦 ·N 𝑧) ∈ N) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
107, 8, 9syl2an 289 . . . . . . 7 (((𝑥N𝑤N) ∧ (𝑦N𝑧N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
1110an42s 589 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N)
12 mulclpi 7412 . . . . . . 7 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
1312ad2ant2l 508 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑤) ∈ N)
1411, 13jca 306 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N))
15 opelxpi 4696 . . . . 5 ((((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) ∈ N ∧ (𝑦 ·N 𝑤) ∈ N) → ⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩ ∈ (N × N))
16 enqex 7444 . . . . . 6 ~Q ∈ V
1716ecelqsi 6657 . . . . 5 (⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩ ∈ (N × N) → [⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
1814, 15, 173syl 17 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → [⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q ∈ ((N × N) / ~Q ))
196, 18eqeltrd 2273 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) ∈ ((N × N) / ~Q ))
201, 3, 5, 192ecoptocl 6691 . 2 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ ((N × N) / ~Q ))
2120, 1eleqtrrdi 2290 1 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) ∈ Q)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cop 3626   × cxp 4662  (class class class)co 5925  [cec 6599   / cqs 6600  Ncnpi 7356   +N cpli 7357   ·N cmi 7358   ~Q ceq 7363  Qcnq 7364   +Q cplq 7366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-plpq 7428  df-enq 7431  df-nqqs 7432  df-plqqs 7433
This theorem is referenced by:  ltaddnq  7491  halfnqq  7494  ltbtwnnqq  7499  prarloclemcalc  7586  addnqprl  7613  addnqpru  7614  addlocprlemeqgt  7616  addlocprlemgt  7618  addlocprlem  7619  addclpr  7621  plpvlu  7622  dmplp  7624  addnqprlemrl  7641  addnqprlemru  7642  addnqprlemfl  7643  addnqprlemfu  7644  addnqpr  7645  addassprg  7663  distrlem1prl  7666  distrlem1pru  7667  distrlem4prl  7668  distrlem4pru  7669  distrlem5prl  7670  distrlem5pru  7671  ltaddpr  7681  ltexprlemloc  7691  ltexprlemfl  7693  ltexprlemrl  7694  ltexprlemfu  7695  ltexprlemru  7696  addcanprleml  7698  addcanprlemu  7699  recexprlemm  7708  aptiprleml  7723  aptiprlemu  7724  caucvgprlemcanl  7728  cauappcvgprlemm  7729  cauappcvgprlemdisj  7735  cauappcvgprlemloc  7736  cauappcvgprlemladdfu  7738  cauappcvgprlemladdfl  7739  cauappcvgprlemladdru  7740  cauappcvgprlemladdrl  7741  cauappcvgprlem1  7743  cauappcvgprlem2  7744  caucvgprlemnkj  7750  caucvgprlemnbj  7751  caucvgprlemm  7752  caucvgprlemloc  7759  caucvgprlemladdfu  7761  caucvgprlemladdrl  7762  caucvgprlem2  7764  caucvgprprlemloccalc  7768  caucvgprprlemml  7778  caucvgprprlemmu  7779  caucvgprprlemopl  7781  caucvgprprlemloc  7787  suplocexprlemmu  7802
  Copyright terms: Public domain W3C validator