ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexnq GIF version

Theorem recexnq 7452
Description: Existence of positive fraction reciprocal. (Contributed by Jim Kingdon, 20-Sep-2019.)
Assertion
Ref Expression
recexnq (𝐴Q → ∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q))
Distinct variable group:   𝑦,𝐴

Proof of Theorem recexnq
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7410 . 2 Q = ((N × N) / ~Q )
2 oveq1 5926 . . . . 5 ([⟨𝑥, 𝑧⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = (𝐴 ·Q 𝑦))
32eqeq1d 2202 . . . 4 ([⟨𝑥, 𝑧⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝑦) = 1Q))
43anbi2d 464 . . 3 ([⟨𝑥, 𝑧⟩] ~Q = 𝐴 → ((𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q) ↔ (𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q)))
54exbidv 1836 . 2 ([⟨𝑥, 𝑧⟩] ~Q = 𝐴 → (∃𝑦(𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q) ↔ ∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q)))
6 opelxpi 4692 . . . . . 6 ((𝑧N𝑥N) → ⟨𝑧, 𝑥⟩ ∈ (N × N))
76ancoms 268 . . . . 5 ((𝑥N𝑧N) → ⟨𝑧, 𝑥⟩ ∈ (N × N))
8 enqex 7422 . . . . . 6 ~Q ∈ V
98ecelqsi 6645 . . . . 5 (⟨𝑧, 𝑥⟩ ∈ (N × N) → [⟨𝑧, 𝑥⟩] ~Q ∈ ((N × N) / ~Q ))
107, 9syl 14 . . . 4 ((𝑥N𝑧N) → [⟨𝑧, 𝑥⟩] ~Q ∈ ((N × N) / ~Q ))
1110, 1eleqtrrdi 2287 . . 3 ((𝑥N𝑧N) → [⟨𝑧, 𝑥⟩] ~QQ)
12 mulcompig 7393 . . . . . . 7 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) = (𝑧 ·N 𝑥))
1312opeq2d 3812 . . . . . 6 ((𝑥N𝑧N) → ⟨(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)⟩ = ⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩)
1413eceq1d 6625 . . . . 5 ((𝑥N𝑧N) → [⟨(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)⟩] ~Q = [⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩] ~Q )
15 mulclpi 7390 . . . . . 6 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) ∈ N)
16 1qec 7450 . . . . . 6 ((𝑥 ·N 𝑧) ∈ N → 1Q = [⟨(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)⟩] ~Q )
1715, 16syl 14 . . . . 5 ((𝑥N𝑧N) → 1Q = [⟨(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)⟩] ~Q )
18 mulpipqqs 7435 . . . . . . 7 (((𝑥N𝑧N) ∧ (𝑧N𝑥N)) → ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩] ~Q )
1918an42s 589 . . . . . 6 (((𝑥N𝑧N) ∧ (𝑥N𝑧N)) → ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩] ~Q )
2019anidms 397 . . . . 5 ((𝑥N𝑧N) → ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩] ~Q )
2114, 17, 203eqtr4rd 2237 . . . 4 ((𝑥N𝑧N) → ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q)
2211, 21jca 306 . . 3 ((𝑥N𝑧N) → ([⟨𝑧, 𝑥⟩] ~QQ ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q))
23 eleq1 2256 . . . . 5 (𝑦 = [⟨𝑧, 𝑥⟩] ~Q → (𝑦Q ↔ [⟨𝑧, 𝑥⟩] ~QQ))
24 oveq2 5927 . . . . . 6 (𝑦 = [⟨𝑧, 𝑥⟩] ~Q → ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ))
2524eqeq1d 2202 . . . . 5 (𝑦 = [⟨𝑧, 𝑥⟩] ~Q → (([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q ↔ ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q))
2623, 25anbi12d 473 . . . 4 (𝑦 = [⟨𝑧, 𝑥⟩] ~Q → ((𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q) ↔ ([⟨𝑧, 𝑥⟩] ~QQ ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q)))
2726spcegv 2849 . . 3 ([⟨𝑧, 𝑥⟩] ~QQ → (([⟨𝑧, 𝑥⟩] ~QQ ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q) → ∃𝑦(𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q)))
2811, 22, 27sylc 62 . 2 ((𝑥N𝑧N) → ∃𝑦(𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q))
291, 5, 28ecoptocl 6678 1 (𝐴Q → ∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2164  cop 3622   × cxp 4658  (class class class)co 5919  [cec 6587   / cqs 6588  Ncnpi 7334   ·N cmi 7336   ~Q ceq 7341  Qcnq 7342  1Qc1q 7343   ·Q cmq 7345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-mi 7368  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-mqqs 7412  df-1nqqs 7413
This theorem is referenced by:  recmulnqg  7453  recclnq  7454
  Copyright terms: Public domain W3C validator