ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexnq GIF version

Theorem recexnq 7457
Description: Existence of positive fraction reciprocal. (Contributed by Jim Kingdon, 20-Sep-2019.)
Assertion
Ref Expression
recexnq (𝐴Q → ∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q))
Distinct variable group:   𝑦,𝐴

Proof of Theorem recexnq
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7415 . 2 Q = ((N × N) / ~Q )
2 oveq1 5929 . . . . 5 ([⟨𝑥, 𝑧⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = (𝐴 ·Q 𝑦))
32eqeq1d 2205 . . . 4 ([⟨𝑥, 𝑧⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝑦) = 1Q))
43anbi2d 464 . . 3 ([⟨𝑥, 𝑧⟩] ~Q = 𝐴 → ((𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q) ↔ (𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q)))
54exbidv 1839 . 2 ([⟨𝑥, 𝑧⟩] ~Q = 𝐴 → (∃𝑦(𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q) ↔ ∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q)))
6 opelxpi 4695 . . . . . 6 ((𝑧N𝑥N) → ⟨𝑧, 𝑥⟩ ∈ (N × N))
76ancoms 268 . . . . 5 ((𝑥N𝑧N) → ⟨𝑧, 𝑥⟩ ∈ (N × N))
8 enqex 7427 . . . . . 6 ~Q ∈ V
98ecelqsi 6648 . . . . 5 (⟨𝑧, 𝑥⟩ ∈ (N × N) → [⟨𝑧, 𝑥⟩] ~Q ∈ ((N × N) / ~Q ))
107, 9syl 14 . . . 4 ((𝑥N𝑧N) → [⟨𝑧, 𝑥⟩] ~Q ∈ ((N × N) / ~Q ))
1110, 1eleqtrrdi 2290 . . 3 ((𝑥N𝑧N) → [⟨𝑧, 𝑥⟩] ~QQ)
12 mulcompig 7398 . . . . . . 7 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) = (𝑧 ·N 𝑥))
1312opeq2d 3815 . . . . . 6 ((𝑥N𝑧N) → ⟨(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)⟩ = ⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩)
1413eceq1d 6628 . . . . 5 ((𝑥N𝑧N) → [⟨(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)⟩] ~Q = [⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩] ~Q )
15 mulclpi 7395 . . . . . 6 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) ∈ N)
16 1qec 7455 . . . . . 6 ((𝑥 ·N 𝑧) ∈ N → 1Q = [⟨(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)⟩] ~Q )
1715, 16syl 14 . . . . 5 ((𝑥N𝑧N) → 1Q = [⟨(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)⟩] ~Q )
18 mulpipqqs 7440 . . . . . . 7 (((𝑥N𝑧N) ∧ (𝑧N𝑥N)) → ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩] ~Q )
1918an42s 589 . . . . . 6 (((𝑥N𝑧N) ∧ (𝑥N𝑧N)) → ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩] ~Q )
2019anidms 397 . . . . 5 ((𝑥N𝑧N) → ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩] ~Q )
2114, 17, 203eqtr4rd 2240 . . . 4 ((𝑥N𝑧N) → ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q)
2211, 21jca 306 . . 3 ((𝑥N𝑧N) → ([⟨𝑧, 𝑥⟩] ~QQ ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q))
23 eleq1 2259 . . . . 5 (𝑦 = [⟨𝑧, 𝑥⟩] ~Q → (𝑦Q ↔ [⟨𝑧, 𝑥⟩] ~QQ))
24 oveq2 5930 . . . . . 6 (𝑦 = [⟨𝑧, 𝑥⟩] ~Q → ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ))
2524eqeq1d 2205 . . . . 5 (𝑦 = [⟨𝑧, 𝑥⟩] ~Q → (([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q ↔ ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q))
2623, 25anbi12d 473 . . . 4 (𝑦 = [⟨𝑧, 𝑥⟩] ~Q → ((𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q) ↔ ([⟨𝑧, 𝑥⟩] ~QQ ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q)))
2726spcegv 2852 . . 3 ([⟨𝑧, 𝑥⟩] ~QQ → (([⟨𝑧, 𝑥⟩] ~QQ ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q) → ∃𝑦(𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q)))
2811, 22, 27sylc 62 . 2 ((𝑥N𝑧N) → ∃𝑦(𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q))
291, 5, 28ecoptocl 6681 1 (𝐴Q → ∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  cop 3625   × cxp 4661  (class class class)co 5922  [cec 6590   / cqs 6591  Ncnpi 7339   ·N cmi 7341   ~Q ceq 7346  Qcnq 7347  1Qc1q 7348   ·Q cmq 7350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-mi 7373  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-mqqs 7417  df-1nqqs 7418
This theorem is referenced by:  recmulnqg  7458  recclnq  7459
  Copyright terms: Public domain W3C validator