Step | Hyp | Ref
| Expression |
1 | | df-nqqs 7289 |
. 2
⊢
Q = ((N × N) /
~Q ) |
2 | | oveq1 5849 |
. . . . 5
⊢
([〈𝑥, 𝑧〉]
~Q = 𝐴 → ([〈𝑥, 𝑧〉] ~Q
·Q 𝑦) = (𝐴 ·Q 𝑦)) |
3 | 2 | eqeq1d 2174 |
. . . 4
⊢
([〈𝑥, 𝑧〉]
~Q = 𝐴 → (([〈𝑥, 𝑧〉] ~Q
·Q 𝑦) = 1Q ↔ (𝐴
·Q 𝑦) =
1Q)) |
4 | 3 | anbi2d 460 |
. . 3
⊢
([〈𝑥, 𝑧〉]
~Q = 𝐴 → ((𝑦 ∈ Q ∧ ([〈𝑥, 𝑧〉] ~Q
·Q 𝑦) = 1Q) ↔
(𝑦 ∈ Q
∧ (𝐴
·Q 𝑦) =
1Q))) |
5 | 4 | exbidv 1813 |
. 2
⊢
([〈𝑥, 𝑧〉]
~Q = 𝐴 → (∃𝑦(𝑦 ∈ Q ∧ ([〈𝑥, 𝑧〉] ~Q
·Q 𝑦) = 1Q) ↔
∃𝑦(𝑦 ∈ Q ∧ (𝐴
·Q 𝑦) =
1Q))) |
6 | | opelxpi 4636 |
. . . . . 6
⊢ ((𝑧 ∈ N ∧
𝑥 ∈ N)
→ 〈𝑧, 𝑥〉 ∈ (N
× N)) |
7 | 6 | ancoms 266 |
. . . . 5
⊢ ((𝑥 ∈ N ∧
𝑧 ∈ N)
→ 〈𝑧, 𝑥〉 ∈ (N
× N)) |
8 | | enqex 7301 |
. . . . . 6
⊢
~Q ∈ V |
9 | 8 | ecelqsi 6555 |
. . . . 5
⊢
(〈𝑧, 𝑥〉 ∈ (N
× N) → [〈𝑧, 𝑥〉] ~Q ∈
((N × N) / ~Q
)) |
10 | 7, 9 | syl 14 |
. . . 4
⊢ ((𝑥 ∈ N ∧
𝑧 ∈ N)
→ [〈𝑧, 𝑥〉]
~Q ∈ ((N × N)
/ ~Q )) |
11 | 10, 1 | eleqtrrdi 2260 |
. . 3
⊢ ((𝑥 ∈ N ∧
𝑧 ∈ N)
→ [〈𝑧, 𝑥〉]
~Q ∈ Q) |
12 | | mulcompig 7272 |
. . . . . . 7
⊢ ((𝑥 ∈ N ∧
𝑧 ∈ N)
→ (𝑥
·N 𝑧) = (𝑧 ·N 𝑥)) |
13 | 12 | opeq2d 3765 |
. . . . . 6
⊢ ((𝑥 ∈ N ∧
𝑧 ∈ N)
→ 〈(𝑥
·N 𝑧), (𝑥 ·N 𝑧)〉 = 〈(𝑥
·N 𝑧), (𝑧 ·N 𝑥)〉) |
14 | 13 | eceq1d 6537 |
. . . . 5
⊢ ((𝑥 ∈ N ∧
𝑧 ∈ N)
→ [〈(𝑥
·N 𝑧), (𝑥 ·N 𝑧)〉]
~Q = [〈(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)〉]
~Q ) |
15 | | mulclpi 7269 |
. . . . . 6
⊢ ((𝑥 ∈ N ∧
𝑧 ∈ N)
→ (𝑥
·N 𝑧) ∈ N) |
16 | | 1qec 7329 |
. . . . . 6
⊢ ((𝑥
·N 𝑧) ∈ N →
1Q = [〈(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)〉]
~Q ) |
17 | 15, 16 | syl 14 |
. . . . 5
⊢ ((𝑥 ∈ N ∧
𝑧 ∈ N)
→ 1Q = [〈(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)〉]
~Q ) |
18 | | mulpipqqs 7314 |
. . . . . . 7
⊢ (((𝑥 ∈ N ∧
𝑧 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑥
∈ N)) → ([〈𝑥, 𝑧〉] ~Q
·Q [〈𝑧, 𝑥〉] ~Q ) =
[〈(𝑥
·N 𝑧), (𝑧 ·N 𝑥)〉]
~Q ) |
19 | 18 | an42s 579 |
. . . . . 6
⊢ (((𝑥 ∈ N ∧
𝑧 ∈ N)
∧ (𝑥 ∈
N ∧ 𝑧
∈ N)) → ([〈𝑥, 𝑧〉] ~Q
·Q [〈𝑧, 𝑥〉] ~Q ) =
[〈(𝑥
·N 𝑧), (𝑧 ·N 𝑥)〉]
~Q ) |
20 | 19 | anidms 395 |
. . . . 5
⊢ ((𝑥 ∈ N ∧
𝑧 ∈ N)
→ ([〈𝑥, 𝑧〉]
~Q ·Q [〈𝑧, 𝑥〉] ~Q ) =
[〈(𝑥
·N 𝑧), (𝑧 ·N 𝑥)〉]
~Q ) |
21 | 14, 17, 20 | 3eqtr4rd 2209 |
. . . 4
⊢ ((𝑥 ∈ N ∧
𝑧 ∈ N)
→ ([〈𝑥, 𝑧〉]
~Q ·Q [〈𝑧, 𝑥〉] ~Q ) =
1Q) |
22 | 11, 21 | jca 304 |
. . 3
⊢ ((𝑥 ∈ N ∧
𝑧 ∈ N)
→ ([〈𝑧, 𝑥〉]
~Q ∈ Q ∧ ([〈𝑥, 𝑧〉] ~Q
·Q [〈𝑧, 𝑥〉] ~Q ) =
1Q)) |
23 | | eleq1 2229 |
. . . . 5
⊢ (𝑦 = [〈𝑧, 𝑥〉] ~Q →
(𝑦 ∈ Q
↔ [〈𝑧, 𝑥〉]
~Q ∈ Q)) |
24 | | oveq2 5850 |
. . . . . 6
⊢ (𝑦 = [〈𝑧, 𝑥〉] ~Q →
([〈𝑥, 𝑧〉]
~Q ·Q 𝑦) = ([〈𝑥, 𝑧〉] ~Q
·Q [〈𝑧, 𝑥〉] ~Q
)) |
25 | 24 | eqeq1d 2174 |
. . . . 5
⊢ (𝑦 = [〈𝑧, 𝑥〉] ~Q →
(([〈𝑥, 𝑧〉]
~Q ·Q 𝑦) = 1Q
↔ ([〈𝑥, 𝑧〉]
~Q ·Q [〈𝑧, 𝑥〉] ~Q ) =
1Q)) |
26 | 23, 25 | anbi12d 465 |
. . . 4
⊢ (𝑦 = [〈𝑧, 𝑥〉] ~Q →
((𝑦 ∈ Q
∧ ([〈𝑥, 𝑧〉]
~Q ·Q 𝑦) = 1Q)
↔ ([〈𝑧, 𝑥〉]
~Q ∈ Q ∧ ([〈𝑥, 𝑧〉] ~Q
·Q [〈𝑧, 𝑥〉] ~Q ) =
1Q))) |
27 | 26 | spcegv 2814 |
. . 3
⊢
([〈𝑧, 𝑥〉]
~Q ∈ Q → (([〈𝑧, 𝑥〉] ~Q ∈
Q ∧ ([〈𝑥, 𝑧〉] ~Q
·Q [〈𝑧, 𝑥〉] ~Q ) =
1Q) → ∃𝑦(𝑦 ∈ Q ∧ ([〈𝑥, 𝑧〉] ~Q
·Q 𝑦) =
1Q))) |
28 | 11, 22, 27 | sylc 62 |
. 2
⊢ ((𝑥 ∈ N ∧
𝑧 ∈ N)
→ ∃𝑦(𝑦 ∈ Q ∧
([〈𝑥, 𝑧〉]
~Q ·Q 𝑦) =
1Q)) |
29 | 1, 5, 28 | ecoptocl 6588 |
1
⊢ (𝐴 ∈ Q →
∃𝑦(𝑦 ∈ Q ∧ (𝐴
·Q 𝑦) =
1Q)) |