ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexnq GIF version

Theorem recexnq 7222
Description: Existence of positive fraction reciprocal. (Contributed by Jim Kingdon, 20-Sep-2019.)
Assertion
Ref Expression
recexnq (𝐴Q → ∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q))
Distinct variable group:   𝑦,𝐴

Proof of Theorem recexnq
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7180 . 2 Q = ((N × N) / ~Q )
2 oveq1 5789 . . . . 5 ([⟨𝑥, 𝑧⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = (𝐴 ·Q 𝑦))
32eqeq1d 2149 . . . 4 ([⟨𝑥, 𝑧⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝑦) = 1Q))
43anbi2d 460 . . 3 ([⟨𝑥, 𝑧⟩] ~Q = 𝐴 → ((𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q) ↔ (𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q)))
54exbidv 1798 . 2 ([⟨𝑥, 𝑧⟩] ~Q = 𝐴 → (∃𝑦(𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q) ↔ ∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q)))
6 opelxpi 4579 . . . . . 6 ((𝑧N𝑥N) → ⟨𝑧, 𝑥⟩ ∈ (N × N))
76ancoms 266 . . . . 5 ((𝑥N𝑧N) → ⟨𝑧, 𝑥⟩ ∈ (N × N))
8 enqex 7192 . . . . . 6 ~Q ∈ V
98ecelqsi 6491 . . . . 5 (⟨𝑧, 𝑥⟩ ∈ (N × N) → [⟨𝑧, 𝑥⟩] ~Q ∈ ((N × N) / ~Q ))
107, 9syl 14 . . . 4 ((𝑥N𝑧N) → [⟨𝑧, 𝑥⟩] ~Q ∈ ((N × N) / ~Q ))
1110, 1eleqtrrdi 2234 . . 3 ((𝑥N𝑧N) → [⟨𝑧, 𝑥⟩] ~QQ)
12 mulcompig 7163 . . . . . . 7 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) = (𝑧 ·N 𝑥))
1312opeq2d 3720 . . . . . 6 ((𝑥N𝑧N) → ⟨(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)⟩ = ⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩)
1413eceq1d 6473 . . . . 5 ((𝑥N𝑧N) → [⟨(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)⟩] ~Q = [⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩] ~Q )
15 mulclpi 7160 . . . . . 6 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) ∈ N)
16 1qec 7220 . . . . . 6 ((𝑥 ·N 𝑧) ∈ N → 1Q = [⟨(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)⟩] ~Q )
1715, 16syl 14 . . . . 5 ((𝑥N𝑧N) → 1Q = [⟨(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)⟩] ~Q )
18 mulpipqqs 7205 . . . . . . 7 (((𝑥N𝑧N) ∧ (𝑧N𝑥N)) → ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩] ~Q )
1918an42s 579 . . . . . 6 (((𝑥N𝑧N) ∧ (𝑥N𝑧N)) → ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩] ~Q )
2019anidms 395 . . . . 5 ((𝑥N𝑧N) → ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩] ~Q )
2114, 17, 203eqtr4rd 2184 . . . 4 ((𝑥N𝑧N) → ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q)
2211, 21jca 304 . . 3 ((𝑥N𝑧N) → ([⟨𝑧, 𝑥⟩] ~QQ ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q))
23 eleq1 2203 . . . . 5 (𝑦 = [⟨𝑧, 𝑥⟩] ~Q → (𝑦Q ↔ [⟨𝑧, 𝑥⟩] ~QQ))
24 oveq2 5790 . . . . . 6 (𝑦 = [⟨𝑧, 𝑥⟩] ~Q → ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ))
2524eqeq1d 2149 . . . . 5 (𝑦 = [⟨𝑧, 𝑥⟩] ~Q → (([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q ↔ ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q))
2623, 25anbi12d 465 . . . 4 (𝑦 = [⟨𝑧, 𝑥⟩] ~Q → ((𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q) ↔ ([⟨𝑧, 𝑥⟩] ~QQ ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q)))
2726spcegv 2777 . . 3 ([⟨𝑧, 𝑥⟩] ~QQ → (([⟨𝑧, 𝑥⟩] ~QQ ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q) → ∃𝑦(𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q)))
2811, 22, 27sylc 62 . 2 ((𝑥N𝑧N) → ∃𝑦(𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q))
291, 5, 28ecoptocl 6524 1 (𝐴Q → ∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wex 1469  wcel 1481  cop 3535   × cxp 4545  (class class class)co 5782  [cec 6435   / cqs 6436  Ncnpi 7104   ·N cmi 7106   ~Q ceq 7111  Qcnq 7112  1Qc1q 7113   ·Q cmq 7115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-mi 7138  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-mqqs 7182  df-1nqqs 7183
This theorem is referenced by:  recmulnqg  7223  recclnq  7224
  Copyright terms: Public domain W3C validator