ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexnq GIF version

Theorem recexnq 7352
Description: Existence of positive fraction reciprocal. (Contributed by Jim Kingdon, 20-Sep-2019.)
Assertion
Ref Expression
recexnq (𝐴Q → ∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q))
Distinct variable group:   𝑦,𝐴

Proof of Theorem recexnq
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7310 . 2 Q = ((N × N) / ~Q )
2 oveq1 5860 . . . . 5 ([⟨𝑥, 𝑧⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = (𝐴 ·Q 𝑦))
32eqeq1d 2179 . . . 4 ([⟨𝑥, 𝑧⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q ↔ (𝐴 ·Q 𝑦) = 1Q))
43anbi2d 461 . . 3 ([⟨𝑥, 𝑧⟩] ~Q = 𝐴 → ((𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q) ↔ (𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q)))
54exbidv 1818 . 2 ([⟨𝑥, 𝑧⟩] ~Q = 𝐴 → (∃𝑦(𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q) ↔ ∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q)))
6 opelxpi 4643 . . . . . 6 ((𝑧N𝑥N) → ⟨𝑧, 𝑥⟩ ∈ (N × N))
76ancoms 266 . . . . 5 ((𝑥N𝑧N) → ⟨𝑧, 𝑥⟩ ∈ (N × N))
8 enqex 7322 . . . . . 6 ~Q ∈ V
98ecelqsi 6567 . . . . 5 (⟨𝑧, 𝑥⟩ ∈ (N × N) → [⟨𝑧, 𝑥⟩] ~Q ∈ ((N × N) / ~Q ))
107, 9syl 14 . . . 4 ((𝑥N𝑧N) → [⟨𝑧, 𝑥⟩] ~Q ∈ ((N × N) / ~Q ))
1110, 1eleqtrrdi 2264 . . 3 ((𝑥N𝑧N) → [⟨𝑧, 𝑥⟩] ~QQ)
12 mulcompig 7293 . . . . . . 7 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) = (𝑧 ·N 𝑥))
1312opeq2d 3772 . . . . . 6 ((𝑥N𝑧N) → ⟨(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)⟩ = ⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩)
1413eceq1d 6549 . . . . 5 ((𝑥N𝑧N) → [⟨(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)⟩] ~Q = [⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩] ~Q )
15 mulclpi 7290 . . . . . 6 ((𝑥N𝑧N) → (𝑥 ·N 𝑧) ∈ N)
16 1qec 7350 . . . . . 6 ((𝑥 ·N 𝑧) ∈ N → 1Q = [⟨(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)⟩] ~Q )
1715, 16syl 14 . . . . 5 ((𝑥N𝑧N) → 1Q = [⟨(𝑥 ·N 𝑧), (𝑥 ·N 𝑧)⟩] ~Q )
18 mulpipqqs 7335 . . . . . . 7 (((𝑥N𝑧N) ∧ (𝑧N𝑥N)) → ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩] ~Q )
1918an42s 584 . . . . . 6 (((𝑥N𝑧N) ∧ (𝑥N𝑧N)) → ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩] ~Q )
2019anidms 395 . . . . 5 ((𝑥N𝑧N) → ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = [⟨(𝑥 ·N 𝑧), (𝑧 ·N 𝑥)⟩] ~Q )
2114, 17, 203eqtr4rd 2214 . . . 4 ((𝑥N𝑧N) → ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q)
2211, 21jca 304 . . 3 ((𝑥N𝑧N) → ([⟨𝑧, 𝑥⟩] ~QQ ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q))
23 eleq1 2233 . . . . 5 (𝑦 = [⟨𝑧, 𝑥⟩] ~Q → (𝑦Q ↔ [⟨𝑧, 𝑥⟩] ~QQ))
24 oveq2 5861 . . . . . 6 (𝑦 = [⟨𝑧, 𝑥⟩] ~Q → ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ))
2524eqeq1d 2179 . . . . 5 (𝑦 = [⟨𝑧, 𝑥⟩] ~Q → (([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q ↔ ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q))
2623, 25anbi12d 470 . . . 4 (𝑦 = [⟨𝑧, 𝑥⟩] ~Q → ((𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q) ↔ ([⟨𝑧, 𝑥⟩] ~QQ ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q)))
2726spcegv 2818 . . 3 ([⟨𝑧, 𝑥⟩] ~QQ → (([⟨𝑧, 𝑥⟩] ~QQ ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q [⟨𝑧, 𝑥⟩] ~Q ) = 1Q) → ∃𝑦(𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q)))
2811, 22, 27sylc 62 . 2 ((𝑥N𝑧N) → ∃𝑦(𝑦Q ∧ ([⟨𝑥, 𝑧⟩] ~Q ·Q 𝑦) = 1Q))
291, 5, 28ecoptocl 6600 1 (𝐴Q → ∃𝑦(𝑦Q ∧ (𝐴 ·Q 𝑦) = 1Q))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141  cop 3586   × cxp 4609  (class class class)co 5853  [cec 6511   / cqs 6512  Ncnpi 7234   ·N cmi 7236   ~Q ceq 7241  Qcnq 7242  1Qc1q 7243   ·Q cmq 7245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-mi 7268  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-mqqs 7312  df-1nqqs 7313
This theorem is referenced by:  recmulnqg  7353  recclnq  7354
  Copyright terms: Public domain W3C validator