ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclsr GIF version

Theorem mulclsr 7816
Description: Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.)
Assertion
Ref Expression
mulclsr ((𝐴R𝐵R) → (𝐴 ·R 𝐵) ∈ R)

Proof of Theorem mulclsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7789 . . 3 R = ((P × P) / ~R )
2 oveq1 5926 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ))
32eleq1d 2262 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R )))
4 oveq2 5927 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 ·R 𝐵))
54eleq1d 2262 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 ·R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 ·R 𝐵) ∈ ((P × P) / ~R )))
6 mulsrpr 7808 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) = [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R )
7 mulclpr 7634 . . . . . . . 8 ((𝑥P𝑧P) → (𝑥 ·P 𝑧) ∈ P)
8 mulclpr 7634 . . . . . . . 8 ((𝑦P𝑤P) → (𝑦 ·P 𝑤) ∈ P)
9 addclpr 7599 . . . . . . . 8 (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
107, 8, 9syl2an 289 . . . . . . 7 (((𝑥P𝑧P) ∧ (𝑦P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
1110an4s 588 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P)
12 mulclpr 7634 . . . . . . . 8 ((𝑥P𝑤P) → (𝑥 ·P 𝑤) ∈ P)
13 mulclpr 7634 . . . . . . . 8 ((𝑦P𝑧P) → (𝑦 ·P 𝑧) ∈ P)
14 addclpr 7599 . . . . . . . 8 (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1512, 13, 14syl2an 289 . . . . . . 7 (((𝑥P𝑤P) ∧ (𝑦P𝑧P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1615an42s 589 . . . . . 6 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)
1711, 16jca 306 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P))
18 opelxpi 4692 . . . . 5 ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) → ⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩ ∈ (P × P))
19 enrex 7799 . . . . . 6 ~R ∈ V
2019ecelqsi 6645 . . . . 5 (⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩ ∈ (P × P) → [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ∈ ((P × P) / ~R ))
2117, 18, 203syl 17 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → [⟨((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))⟩] ~R ∈ ((P × P) / ~R ))
226, 21eqeltrd 2270 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R ·R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R ))
231, 3, 5, 222ecoptocl 6679 . 2 ((𝐴R𝐵R) → (𝐴 ·R 𝐵) ∈ ((P × P) / ~R ))
2423, 1eleqtrrdi 2287 1 ((𝐴R𝐵R) → (𝐴 ·R 𝐵) ∈ R)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cop 3622   × cxp 4658  (class class class)co 5919  [cec 6587   / cqs 6588  Pcnp 7353   +P cpp 7355   ·P cmp 7356   ~R cer 7358  Rcnr 7359   ·R cmr 7364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-iplp 7530  df-imp 7531  df-enr 7788  df-nr 7789  df-mr 7791
This theorem is referenced by:  pn0sr  7833  negexsr  7834  caucvgsrlemoffval  7858  caucvgsrlemofff  7859  map2psrprg  7867  mulcnsr  7897  mulresr  7900  mulcnsrec  7905  axmulcl  7928  axmulrcl  7929  axmulcom  7933  axmulass  7935  axdistr  7936  axrnegex  7941
  Copyright terms: Public domain W3C validator