| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulclsr | GIF version | ||
| Description: Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) |
| Ref | Expression |
|---|---|
| mulclsr | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 7910 | . . 3 ⊢ R = ((P × P) / ~R ) | |
| 2 | oveq1 6007 | . . . 4 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) = (𝐴 ·R [〈𝑧, 𝑤〉] ~R )) | |
| 3 | 2 | eleq1d 2298 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 ·R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ))) |
| 4 | oveq2 6008 | . . . 4 ⊢ ([〈𝑧, 𝑤〉] ~R = 𝐵 → (𝐴 ·R [〈𝑧, 𝑤〉] ~R ) = (𝐴 ·R 𝐵)) | |
| 5 | 4 | eleq1d 2298 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ~R = 𝐵 → ((𝐴 ·R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 ·R 𝐵) ∈ ((P × P) / ~R ))) |
| 6 | mulsrpr 7929 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) = [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ) | |
| 7 | mulclpr 7755 | . . . . . . . 8 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥 ·P 𝑧) ∈ P) | |
| 8 | mulclpr 7755 | . . . . . . . 8 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P) → (𝑦 ·P 𝑤) ∈ P) | |
| 9 | addclpr 7720 | . . . . . . . 8 ⊢ (((𝑥 ·P 𝑧) ∈ P ∧ (𝑦 ·P 𝑤) ∈ P) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) | |
| 10 | 7, 8, 9 | syl2an 289 | . . . . . . 7 ⊢ (((𝑥 ∈ P ∧ 𝑧 ∈ P) ∧ (𝑦 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) |
| 11 | 10 | an4s 590 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P) |
| 12 | mulclpr 7755 | . . . . . . . 8 ⊢ ((𝑥 ∈ P ∧ 𝑤 ∈ P) → (𝑥 ·P 𝑤) ∈ P) | |
| 13 | mulclpr 7755 | . . . . . . . 8 ⊢ ((𝑦 ∈ P ∧ 𝑧 ∈ P) → (𝑦 ·P 𝑧) ∈ P) | |
| 14 | addclpr 7720 | . . . . . . . 8 ⊢ (((𝑥 ·P 𝑤) ∈ P ∧ (𝑦 ·P 𝑧) ∈ P) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) | |
| 15 | 12, 13, 14 | syl2an 289 | . . . . . . 7 ⊢ (((𝑥 ∈ P ∧ 𝑤 ∈ P) ∧ (𝑦 ∈ P ∧ 𝑧 ∈ P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) |
| 16 | 15 | an42s 591 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) |
| 17 | 11, 16 | jca 306 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → (((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P)) |
| 18 | opelxpi 4750 | . . . . 5 ⊢ ((((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)) ∈ P ∧ ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧)) ∈ P) → 〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉 ∈ (P × P)) | |
| 19 | enrex 7920 | . . . . . 6 ⊢ ~R ∈ V | |
| 20 | 19 | ecelqsi 6734 | . . . . 5 ⊢ (〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉 ∈ (P × P) → [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ∈ ((P × P) / ~R )) |
| 21 | 17, 18, 20 | 3syl 17 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → [〈((𝑥 ·P 𝑧) +P (𝑦 ·P 𝑤)), ((𝑥 ·P 𝑤) +P (𝑦 ·P 𝑧))〉] ~R ∈ ((P × P) / ~R )) |
| 22 | 6, 21 | eqeltrd 2306 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R ·R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R )) |
| 23 | 1, 3, 5, 22 | 2ecoptocl 6768 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ ((P × P) / ~R )) |
| 24 | 23, 1 | eleqtrrdi 2323 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 〈cop 3669 × cxp 4716 (class class class)co 6000 [cec 6676 / cqs 6677 Pcnp 7474 +P cpp 7476 ·P cmp 7477 ~R cer 7479 Rcnr 7480 ·R cmr 7485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-2o 6561 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-enq0 7607 df-nq0 7608 df-0nq0 7609 df-plq0 7610 df-mq0 7611 df-inp 7649 df-iplp 7651 df-imp 7652 df-enr 7909 df-nr 7910 df-mr 7912 |
| This theorem is referenced by: pn0sr 7954 negexsr 7955 caucvgsrlemoffval 7979 caucvgsrlemofff 7980 map2psrprg 7988 mulcnsr 8018 mulresr 8021 mulcnsrec 8026 axmulcl 8049 axmulrcl 8050 axmulcom 8054 axmulass 8056 axdistr 8057 axrnegex 8062 |
| Copyright terms: Public domain | W3C validator |