Step | Hyp | Ref
| Expression |
1 | | df-nq0 7387 |
. . 3
⊢
Q0 = ((ω × N)
/ ~Q0 ) |
2 | | oveq1 5860 |
. . . 4
⊢
([〈𝑥, 𝑦〉]
~Q0 = 𝐴 → ([〈𝑥, 𝑦〉] ~Q0
+Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
(𝐴
+Q0 [〈𝑧, 𝑤〉] ~Q0
)) |
3 | 2 | eleq1d 2239 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~Q0 = 𝐴 → (([〈𝑥, 𝑦〉] ~Q0
+Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈
((ω × N) / ~Q0 )
↔ (𝐴
+Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈
((ω × N) / ~Q0
))) |
4 | | oveq2 5861 |
. . . 4
⊢
([〈𝑧, 𝑤〉]
~Q0 = 𝐵 → (𝐴 +Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
(𝐴
+Q0 𝐵)) |
5 | 4 | eleq1d 2239 |
. . 3
⊢
([〈𝑧, 𝑤〉]
~Q0 = 𝐵 → ((𝐴 +Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈
((ω × N) / ~Q0 )
↔ (𝐴
+Q0 𝐵) ∈ ((ω × N)
/ ~Q0 ))) |
6 | | addnnnq0 7411 |
. . . 4
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ ([〈𝑥, 𝑦〉]
~Q0 +Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
[〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 ) |
7 | | pinn 7271 |
. . . . . . . . 9
⊢ (𝑤 ∈ N →
𝑤 ∈
ω) |
8 | | nnmcl 6460 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ω ∧ 𝑤 ∈ ω) → (𝑥 ·o 𝑤) ∈
ω) |
9 | 7, 8 | sylan2 284 |
. . . . . . . 8
⊢ ((𝑥 ∈ ω ∧ 𝑤 ∈ N) →
(𝑥 ·o
𝑤) ∈
ω) |
10 | | pinn 7271 |
. . . . . . . . 9
⊢ (𝑦 ∈ N →
𝑦 ∈
ω) |
11 | | nnmcl 6460 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ·o 𝑧) ∈
ω) |
12 | 10, 11 | sylan 281 |
. . . . . . . 8
⊢ ((𝑦 ∈ N ∧
𝑧 ∈ ω) →
(𝑦 ·o
𝑧) ∈
ω) |
13 | | nnacl 6459 |
. . . . . . . 8
⊢ (((𝑥 ·o 𝑤) ∈ ω ∧ (𝑦 ·o 𝑧) ∈ ω) → ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈
ω) |
14 | 9, 12, 13 | syl2an 287 |
. . . . . . 7
⊢ (((𝑥 ∈ ω ∧ 𝑤 ∈ N) ∧
(𝑦 ∈ N
∧ 𝑧 ∈ ω))
→ ((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧))
∈ ω) |
15 | 14 | an42s 584 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ ((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧))
∈ ω) |
16 | | mulpiord 7279 |
. . . . . . . 8
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N)
→ (𝑦
·N 𝑤) = (𝑦 ·o 𝑤)) |
17 | | mulclpi 7290 |
. . . . . . . 8
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N)
→ (𝑦
·N 𝑤) ∈ N) |
18 | 16, 17 | eqeltrrd 2248 |
. . . . . . 7
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N)
→ (𝑦
·o 𝑤)
∈ N) |
19 | 18 | ad2ant2l 505 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ (𝑦
·o 𝑤)
∈ N) |
20 | 15, 19 | jca 304 |
. . . . 5
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ (((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧))
∈ ω ∧ (𝑦
·o 𝑤)
∈ N)) |
21 | | opelxpi 4643 |
. . . . 5
⊢ ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N) →
〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉 ∈ (ω
× N)) |
22 | | enq0ex 7401 |
. . . . . 6
⊢
~Q0 ∈ V |
23 | 22 | ecelqsi 6567 |
. . . . 5
⊢
(〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉 ∈ (ω
× N) → [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q0 ∈
((ω × N) / ~Q0
)) |
24 | 20, 21, 23 | 3syl 17 |
. . . 4
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ [〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 ∈ ((ω × N) /
~Q0 )) |
25 | 6, 24 | eqeltrd 2247 |
. . 3
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ ([〈𝑥, 𝑦〉]
~Q0 +Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈
((ω × N) / ~Q0
)) |
26 | 1, 3, 5, 25 | 2ecoptocl 6601 |
. 2
⊢ ((𝐴 ∈
Q0 ∧ 𝐵 ∈ Q0) →
(𝐴
+Q0 𝐵) ∈ ((ω × N)
/ ~Q0 )) |
27 | 26, 1 | eleqtrrdi 2264 |
1
⊢ ((𝐴 ∈
Q0 ∧ 𝐵 ∈ Q0) →
(𝐴
+Q0 𝐵) ∈
Q0) |