| Step | Hyp | Ref
| Expression |
| 1 | | df-nq0 7492 |
. . 3
⊢
Q0 = ((ω × N)
/ ~Q0 ) |
| 2 | | oveq1 5929 |
. . . 4
⊢
([〈𝑥, 𝑦〉]
~Q0 = 𝐴 → ([〈𝑥, 𝑦〉] ~Q0
+Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
(𝐴
+Q0 [〈𝑧, 𝑤〉] ~Q0
)) |
| 3 | 2 | eleq1d 2265 |
. . 3
⊢
([〈𝑥, 𝑦〉]
~Q0 = 𝐴 → (([〈𝑥, 𝑦〉] ~Q0
+Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈
((ω × N) / ~Q0 )
↔ (𝐴
+Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈
((ω × N) / ~Q0
))) |
| 4 | | oveq2 5930 |
. . . 4
⊢
([〈𝑧, 𝑤〉]
~Q0 = 𝐵 → (𝐴 +Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
(𝐴
+Q0 𝐵)) |
| 5 | 4 | eleq1d 2265 |
. . 3
⊢
([〈𝑧, 𝑤〉]
~Q0 = 𝐵 → ((𝐴 +Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈
((ω × N) / ~Q0 )
↔ (𝐴
+Q0 𝐵) ∈ ((ω × N)
/ ~Q0 ))) |
| 6 | | addnnnq0 7516 |
. . . 4
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ ([〈𝑥, 𝑦〉]
~Q0 +Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
[〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 ) |
| 7 | | pinn 7376 |
. . . . . . . . 9
⊢ (𝑤 ∈ N →
𝑤 ∈
ω) |
| 8 | | nnmcl 6539 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ω ∧ 𝑤 ∈ ω) → (𝑥 ·o 𝑤) ∈
ω) |
| 9 | 7, 8 | sylan2 286 |
. . . . . . . 8
⊢ ((𝑥 ∈ ω ∧ 𝑤 ∈ N) →
(𝑥 ·o
𝑤) ∈
ω) |
| 10 | | pinn 7376 |
. . . . . . . . 9
⊢ (𝑦 ∈ N →
𝑦 ∈
ω) |
| 11 | | nnmcl 6539 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ·o 𝑧) ∈
ω) |
| 12 | 10, 11 | sylan 283 |
. . . . . . . 8
⊢ ((𝑦 ∈ N ∧
𝑧 ∈ ω) →
(𝑦 ·o
𝑧) ∈
ω) |
| 13 | | nnacl 6538 |
. . . . . . . 8
⊢ (((𝑥 ·o 𝑤) ∈ ω ∧ (𝑦 ·o 𝑧) ∈ ω) → ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈
ω) |
| 14 | 9, 12, 13 | syl2an 289 |
. . . . . . 7
⊢ (((𝑥 ∈ ω ∧ 𝑤 ∈ N) ∧
(𝑦 ∈ N
∧ 𝑧 ∈ ω))
→ ((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧))
∈ ω) |
| 15 | 14 | an42s 589 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ ((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧))
∈ ω) |
| 16 | | mulpiord 7384 |
. . . . . . . 8
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N)
→ (𝑦
·N 𝑤) = (𝑦 ·o 𝑤)) |
| 17 | | mulclpi 7395 |
. . . . . . . 8
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N)
→ (𝑦
·N 𝑤) ∈ N) |
| 18 | 16, 17 | eqeltrrd 2274 |
. . . . . . 7
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N)
→ (𝑦
·o 𝑤)
∈ N) |
| 19 | 18 | ad2ant2l 508 |
. . . . . 6
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ (𝑦
·o 𝑤)
∈ N) |
| 20 | 15, 19 | jca 306 |
. . . . 5
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ (((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧))
∈ ω ∧ (𝑦
·o 𝑤)
∈ N)) |
| 21 | | opelxpi 4695 |
. . . . 5
⊢ ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N) →
〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉 ∈ (ω
× N)) |
| 22 | | enq0ex 7506 |
. . . . . 6
⊢
~Q0 ∈ V |
| 23 | 22 | ecelqsi 6648 |
. . . . 5
⊢
(〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉 ∈ (ω
× N) → [〈((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)〉] ~Q0 ∈
((ω × N) / ~Q0
)) |
| 24 | 20, 21, 23 | 3syl 17 |
. . . 4
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ [〈((𝑥
·o 𝑤)
+o (𝑦
·o 𝑧)),
(𝑦 ·o
𝑤)〉]
~Q0 ∈ ((ω × N) /
~Q0 )) |
| 25 | 6, 24 | eqeltrd 2273 |
. . 3
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ ([〈𝑥, 𝑦〉]
~Q0 +Q0 [〈𝑧, 𝑤〉] ~Q0 ) ∈
((ω × N) / ~Q0
)) |
| 26 | 1, 3, 5, 25 | 2ecoptocl 6682 |
. 2
⊢ ((𝐴 ∈
Q0 ∧ 𝐵 ∈ Q0) →
(𝐴
+Q0 𝐵) ∈ ((ω × N)
/ ~Q0 )) |
| 27 | 26, 1 | eleqtrrdi 2290 |
1
⊢ ((𝐴 ∈
Q0 ∧ 𝐵 ∈ Q0) →
(𝐴
+Q0 𝐵) ∈
Q0) |