ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addclnq0 GIF version

Theorem addclnq0 6913
Description: Closure of addition on non-negative fractions. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
addclnq0 ((𝐴Q0𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q0)

Proof of Theorem addclnq0
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq0 6887 . . 3 Q0 = ((ω × N) / ~Q0 )
2 oveq1 5598 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
32eleq1d 2151 . . 3 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) ∈ ((ω × N) / ~Q0 ) ↔ (𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) ∈ ((ω × N) / ~Q0 )))
4 oveq2 5599 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → (𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 +Q0 𝐵))
54eleq1d 2151 . . 3 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) ∈ ((ω × N) / ~Q0 ) ↔ (𝐴 +Q0 𝐵) ∈ ((ω × N) / ~Q0 )))
6 addnnnq0 6911 . . . 4 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 )
7 pinn 6771 . . . . . . . . 9 (𝑤N𝑤 ∈ ω)
8 nnmcl 6174 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑤 ∈ ω) → (𝑥 ·𝑜 𝑤) ∈ ω)
97, 8sylan2 280 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝑤N) → (𝑥 ·𝑜 𝑤) ∈ ω)
10 pinn 6771 . . . . . . . . 9 (𝑦N𝑦 ∈ ω)
11 nnmcl 6174 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ·𝑜 𝑧) ∈ ω)
1210, 11sylan 277 . . . . . . . 8 ((𝑦N𝑧 ∈ ω) → (𝑦 ·𝑜 𝑧) ∈ ω)
13 nnacl 6173 . . . . . . . 8 (((𝑥 ·𝑜 𝑤) ∈ ω ∧ (𝑦 ·𝑜 𝑧) ∈ ω) → ((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ∈ ω)
149, 12, 13syl2an 283 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝑤N) ∧ (𝑦N𝑧 ∈ ω)) → ((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ∈ ω)
1514an42s 554 . . . . . 6 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ∈ ω)
16 mulpiord 6779 . . . . . . . 8 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) = (𝑦 ·𝑜 𝑤))
17 mulclpi 6790 . . . . . . . 8 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
1816, 17eqeltrrd 2160 . . . . . . 7 ((𝑦N𝑤N) → (𝑦 ·𝑜 𝑤) ∈ N)
1918ad2ant2l 492 . . . . . 6 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑦 ·𝑜 𝑤) ∈ N)
2015, 19jca 300 . . . . 5 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ∈ ω ∧ (𝑦 ·𝑜 𝑤) ∈ N))
21 opelxpi 4432 . . . . 5 ((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ∈ ω ∧ (𝑦 ·𝑜 𝑤) ∈ N) → ⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩ ∈ (ω × N))
22 enq0ex 6901 . . . . . 6 ~Q0 ∈ V
2322ecelqsi 6276 . . . . 5 (⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩ ∈ (ω × N) → [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
2420, 21, 233syl 17 . . . 4 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
256, 24eqeltrd 2159 . . 3 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) ∈ ((ω × N) / ~Q0 ))
261, 3, 5, 252ecoptocl 6310 . 2 ((𝐴Q0𝐵Q0) → (𝐴 +Q0 𝐵) ∈ ((ω × N) / ~Q0 ))
2726, 1syl6eleqr 2176 1 ((𝐴Q0𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  cop 3425  ωcom 4368   × cxp 4399  (class class class)co 5591   +𝑜 coa 6110   ·𝑜 comu 6111  [cec 6220   / cqs 6221  Ncnpi 6734   ·N cmi 6736   ~Q0 ceq0 6748  Q0cnq0 6749   +Q0 cplq0 6751
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-oadd 6117  df-omul 6118  df-er 6222  df-ec 6224  df-qs 6228  df-ni 6766  df-mi 6768  df-enq0 6886  df-nq0 6887  df-plq0 6889
This theorem is referenced by:  distnq0r  6925  prarloclemcalc  6964
  Copyright terms: Public domain W3C validator