ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addclnq0 GIF version

Theorem addclnq0 7259
Description: Closure of addition on nonnegative fractions. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
addclnq0 ((𝐴Q0𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q0)

Proof of Theorem addclnq0
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq0 7233 . . 3 Q0 = ((ω × N) / ~Q0 )
2 oveq1 5781 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
32eleq1d 2208 . . 3 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) ∈ ((ω × N) / ~Q0 ) ↔ (𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) ∈ ((ω × N) / ~Q0 )))
4 oveq2 5782 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → (𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 +Q0 𝐵))
54eleq1d 2208 . . 3 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) ∈ ((ω × N) / ~Q0 ) ↔ (𝐴 +Q0 𝐵) ∈ ((ω × N) / ~Q0 )))
6 addnnnq0 7257 . . . 4 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 )
7 pinn 7117 . . . . . . . . 9 (𝑤N𝑤 ∈ ω)
8 nnmcl 6377 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑤 ∈ ω) → (𝑥 ·o 𝑤) ∈ ω)
97, 8sylan2 284 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝑤N) → (𝑥 ·o 𝑤) ∈ ω)
10 pinn 7117 . . . . . . . . 9 (𝑦N𝑦 ∈ ω)
11 nnmcl 6377 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ·o 𝑧) ∈ ω)
1210, 11sylan 281 . . . . . . . 8 ((𝑦N𝑧 ∈ ω) → (𝑦 ·o 𝑧) ∈ ω)
13 nnacl 6376 . . . . . . . 8 (((𝑥 ·o 𝑤) ∈ ω ∧ (𝑦 ·o 𝑧) ∈ ω) → ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ ω)
149, 12, 13syl2an 287 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝑤N) ∧ (𝑦N𝑧 ∈ ω)) → ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ ω)
1514an42s 578 . . . . . 6 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ ω)
16 mulpiord 7125 . . . . . . . 8 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) = (𝑦 ·o 𝑤))
17 mulclpi 7136 . . . . . . . 8 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) ∈ N)
1816, 17eqeltrrd 2217 . . . . . . 7 ((𝑦N𝑤N) → (𝑦 ·o 𝑤) ∈ N)
1918ad2ant2l 499 . . . . . 6 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑦 ·o 𝑤) ∈ N)
2015, 19jca 304 . . . . 5 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N))
21 opelxpi 4571 . . . . 5 ((((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)) ∈ ω ∧ (𝑦 ·o 𝑤) ∈ N) → ⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩ ∈ (ω × N))
22 enq0ex 7247 . . . . . 6 ~Q0 ∈ V
2322ecelqsi 6483 . . . . 5 (⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩ ∈ (ω × N) → [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
2420, 21, 233syl 17 . . . 4 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨((𝑥 ·o 𝑤) +o (𝑦 ·o 𝑧)), (𝑦 ·o 𝑤)⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
256, 24eqeltrd 2216 . . 3 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) ∈ ((ω × N) / ~Q0 ))
261, 3, 5, 252ecoptocl 6517 . 2 ((𝐴Q0𝐵Q0) → (𝐴 +Q0 𝐵) ∈ ((ω × N) / ~Q0 ))
2726, 1eleqtrrdi 2233 1 ((𝐴Q0𝐵Q0) → (𝐴 +Q0 𝐵) ∈ Q0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  cop 3530  ωcom 4504   × cxp 4537  (class class class)co 5774   +o coa 6310   ·o comu 6311  [cec 6427   / cqs 6428  Ncnpi 7080   ·N cmi 7082   ~Q0 ceq0 7094  Q0cnq0 7095   +Q0 cplq0 7097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-mi 7114  df-enq0 7232  df-nq0 7233  df-plq0 7235
This theorem is referenced by:  distnq0r  7271  prarloclemcalc  7310
  Copyright terms: Public domain W3C validator