ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecopoveq GIF version

Theorem ecopoveq 6608
Description: This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation (specified by the hypothesis) in terms of its operation 𝐹. (Contributed by NM, 16-Aug-1995.)
Hypothesis
Ref Expression
ecopopr.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
Assertion
Ref Expression
ecopoveq (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵𝐶, 𝐷⟩ ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢, +   𝑥,𝑆,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝐴,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝐶,𝑦,𝑧,𝑤,𝑣,𝑢   𝑥,𝐷,𝑦,𝑧,𝑤,𝑣,𝑢
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑤,𝑣,𝑢)

Proof of Theorem ecopoveq
StepHypRef Expression
1 oveq12 5862 . . . 4 ((𝑧 = 𝐴𝑢 = 𝐷) → (𝑧 + 𝑢) = (𝐴 + 𝐷))
2 oveq12 5862 . . . 4 ((𝑤 = 𝐵𝑣 = 𝐶) → (𝑤 + 𝑣) = (𝐵 + 𝐶))
31, 2eqeqan12d 2186 . . 3 (((𝑧 = 𝐴𝑢 = 𝐷) ∧ (𝑤 = 𝐵𝑣 = 𝐶)) → ((𝑧 + 𝑢) = (𝑤 + 𝑣) ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶)))
43an42s 584 . 2 (((𝑧 = 𝐴𝑤 = 𝐵) ∧ (𝑣 = 𝐶𝑢 = 𝐷)) → ((𝑧 + 𝑢) = (𝑤 + 𝑣) ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶)))
5 ecopopr.1 . 2 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))}
64, 5opbrop 4690 1 (((𝐴𝑆𝐵𝑆) ∧ (𝐶𝑆𝐷𝑆)) → (⟨𝐴, 𝐵𝐶, 𝐷⟩ ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  cop 3586   class class class wbr 3989  {copab 4049   × cxp 4609  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  ecopovsym  6609  ecopovtrn  6610  ecopover  6611  ecopovsymg  6612  ecopovtrng  6613  ecopoverg  6614  enqbreq  7318  enrbreq  7696  prsrlem1  7704
  Copyright terms: Public domain W3C validator