Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecopoveq | GIF version |
Description: This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation ∼ (specified by the hypothesis) in terms of its operation 𝐹. (Contributed by NM, 16-Aug-1995.) |
Ref | Expression |
---|---|
ecopopr.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} |
Ref | Expression |
---|---|
ecopoveq | ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (〈𝐴, 𝐵〉 ∼ 〈𝐶, 𝐷〉 ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 5862 | . . . 4 ⊢ ((𝑧 = 𝐴 ∧ 𝑢 = 𝐷) → (𝑧 + 𝑢) = (𝐴 + 𝐷)) | |
2 | oveq12 5862 | . . . 4 ⊢ ((𝑤 = 𝐵 ∧ 𝑣 = 𝐶) → (𝑤 + 𝑣) = (𝐵 + 𝐶)) | |
3 | 1, 2 | eqeqan12d 2186 | . . 3 ⊢ (((𝑧 = 𝐴 ∧ 𝑢 = 𝐷) ∧ (𝑤 = 𝐵 ∧ 𝑣 = 𝐶)) → ((𝑧 + 𝑢) = (𝑤 + 𝑣) ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) |
4 | 3 | an42s 584 | . 2 ⊢ (((𝑧 = 𝐴 ∧ 𝑤 = 𝐵) ∧ (𝑣 = 𝐶 ∧ 𝑢 = 𝐷)) → ((𝑧 + 𝑢) = (𝑤 + 𝑣) ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) |
5 | ecopopr.1 | . 2 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝑆 × 𝑆) ∧ 𝑦 ∈ (𝑆 × 𝑆)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 + 𝑢) = (𝑤 + 𝑣)))} | |
6 | 4, 5 | opbrop 4690 | 1 ⊢ (((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (〈𝐴, 𝐵〉 ∼ 〈𝐶, 𝐷〉 ↔ (𝐴 + 𝐷) = (𝐵 + 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 〈cop 3586 class class class wbr 3989 {copab 4049 × cxp 4609 (class class class)co 5853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: ecopovsym 6609 ecopovtrn 6610 ecopover 6611 ecopovsymg 6612 ecopovtrng 6613 ecopoverg 6614 enqbreq 7318 enrbreq 7696 prsrlem1 7704 |
Copyright terms: Public domain | W3C validator |