![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addpipqqslem | GIF version |
Description: Lemma for addpipqqs 7372. (Contributed by Jim Kingdon, 11-Sep-2019.) |
Ref | Expression |
---|---|
addpipqqslem | โข (((๐ด โ N โง ๐ต โ N) โง (๐ถ โ N โง ๐ท โ N)) โ โจ((๐ด ยทN ๐ท) +N (๐ต ยทN ๐ถ)), (๐ต ยทN ๐ท)โฉ โ (N ร N)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulclpi 7330 | . . . 4 โข ((๐ด โ N โง ๐ท โ N) โ (๐ด ยทN ๐ท) โ N) | |
2 | mulclpi 7330 | . . . 4 โข ((๐ต โ N โง ๐ถ โ N) โ (๐ต ยทN ๐ถ) โ N) | |
3 | addclpi 7329 | . . . 4 โข (((๐ด ยทN ๐ท) โ N โง (๐ต ยทN ๐ถ) โ N) โ ((๐ด ยทN ๐ท) +N (๐ต ยทN ๐ถ)) โ N) | |
4 | 1, 2, 3 | syl2an 289 | . . 3 โข (((๐ด โ N โง ๐ท โ N) โง (๐ต โ N โง ๐ถ โ N)) โ ((๐ด ยทN ๐ท) +N (๐ต ยทN ๐ถ)) โ N) |
5 | 4 | an42s 589 | . 2 โข (((๐ด โ N โง ๐ต โ N) โง (๐ถ โ N โง ๐ท โ N)) โ ((๐ด ยทN ๐ท) +N (๐ต ยทN ๐ถ)) โ N) |
6 | mulclpi 7330 | . . 3 โข ((๐ต โ N โง ๐ท โ N) โ (๐ต ยทN ๐ท) โ N) | |
7 | 6 | ad2ant2l 508 | . 2 โข (((๐ด โ N โง ๐ต โ N) โง (๐ถ โ N โง ๐ท โ N)) โ (๐ต ยทN ๐ท) โ N) |
8 | opelxpi 4660 | . 2 โข ((((๐ด ยทN ๐ท) +N (๐ต ยทN ๐ถ)) โ N โง (๐ต ยทN ๐ท) โ N) โ โจ((๐ด ยทN ๐ท) +N (๐ต ยทN ๐ถ)), (๐ต ยทN ๐ท)โฉ โ (N ร N)) | |
9 | 5, 7, 8 | syl2anc 411 | 1 โข (((๐ด โ N โง ๐ต โ N) โง (๐ถ โ N โง ๐ท โ N)) โ โจ((๐ด ยทN ๐ท) +N (๐ต ยทN ๐ถ)), (๐ต ยทN ๐ท)โฉ โ (N ร N)) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 โ wcel 2148 โจcop 3597 ร cxp 4626 (class class class)co 5878 Ncnpi 7274 +N cpli 7275 ยทN cmi 7276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-irdg 6374 df-oadd 6424 df-omul 6425 df-ni 7306 df-pli 7307 df-mi 7308 |
This theorem is referenced by: addpipqqs 7372 |
Copyright terms: Public domain | W3C validator |