ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addpipqqslem GIF version

Theorem addpipqqslem 7365
Description: Lemma for addpipqqs 7366. (Contributed by Jim Kingdon, 11-Sep-2019.)
Assertion
Ref Expression
addpipqqslem (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ⟨((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)), (𝐵 ·N 𝐷)⟩ ∈ (N × N))

Proof of Theorem addpipqqslem
StepHypRef Expression
1 mulclpi 7324 . . . 4 ((𝐴N𝐷N) → (𝐴 ·N 𝐷) ∈ N)
2 mulclpi 7324 . . . 4 ((𝐵N𝐶N) → (𝐵 ·N 𝐶) ∈ N)
3 addclpi 7323 . . . 4 (((𝐴 ·N 𝐷) ∈ N ∧ (𝐵 ·N 𝐶) ∈ N) → ((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)) ∈ N)
41, 2, 3syl2an 289 . . 3 (((𝐴N𝐷N) ∧ (𝐵N𝐶N)) → ((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)) ∈ N)
54an42s 589 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)) ∈ N)
6 mulclpi 7324 . . 3 ((𝐵N𝐷N) → (𝐵 ·N 𝐷) ∈ N)
76ad2ant2l 508 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (𝐵 ·N 𝐷) ∈ N)
8 opelxpi 4657 . 2 ((((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)) ∈ N ∧ (𝐵 ·N 𝐷) ∈ N) → ⟨((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)), (𝐵 ·N 𝐷)⟩ ∈ (N × N))
95, 7, 8syl2anc 411 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ⟨((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)), (𝐵 ·N 𝐷)⟩ ∈ (N × N))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  cop 3595   × cxp 4623  (class class class)co 5872  Ncnpi 7268   +N cpli 7269   ·N cmi 7270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-tr 4101  df-id 4292  df-iord 4365  df-on 4367  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1st 6138  df-2nd 6139  df-recs 6303  df-irdg 6368  df-oadd 6418  df-omul 6419  df-ni 7300  df-pli 7301  df-mi 7302
This theorem is referenced by:  addpipqqs  7366
  Copyright terms: Public domain W3C validator