ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmsucr GIF version

Theorem nnmsucr 6546
Description: Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmsucr ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵))

Proof of Theorem nnmsucr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5930 . . . . 5 (𝑥 = 𝐵 → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o 𝐵))
2 oveq2 5930 . . . . . 6 (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵))
3 id 19 . . . . . 6 (𝑥 = 𝐵𝑥 = 𝐵)
42, 3oveq12d 5940 . . . . 5 (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o 𝐵) +o 𝐵))
51, 4eqeq12d 2211 . . . 4 (𝑥 = 𝐵 → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵)))
65imbi2d 230 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥)) ↔ (𝐴 ∈ ω → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵))))
7 oveq2 5930 . . . . 5 (𝑥 = ∅ → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o ∅))
8 oveq2 5930 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
9 id 19 . . . . . 6 (𝑥 = ∅ → 𝑥 = ∅)
108, 9oveq12d 5940 . . . . 5 (𝑥 = ∅ → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o ∅) +o ∅))
117, 10eqeq12d 2211 . . . 4 (𝑥 = ∅ → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o ∅) = ((𝐴 ·o ∅) +o ∅)))
12 oveq2 5930 . . . . 5 (𝑥 = 𝑦 → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o 𝑦))
13 oveq2 5930 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
14 id 19 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
1513, 14oveq12d 5940 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o 𝑦) +o 𝑦))
1612, 15eqeq12d 2211 . . . 4 (𝑥 = 𝑦 → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦)))
17 oveq2 5930 . . . . 5 (𝑥 = suc 𝑦 → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o suc 𝑦))
18 oveq2 5930 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
19 id 19 . . . . . 6 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
2018, 19oveq12d 5940 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o suc 𝑦) +o suc 𝑦))
2117, 20eqeq12d 2211 . . . 4 (𝑥 = suc 𝑦 → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦)))
22 peano2 4631 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
23 nnm0 6533 . . . . . . 7 (suc 𝐴 ∈ ω → (suc 𝐴 ·o ∅) = ∅)
2422, 23syl 14 . . . . . 6 (𝐴 ∈ ω → (suc 𝐴 ·o ∅) = ∅)
25 nnm0 6533 . . . . . 6 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
2624, 25eqtr4d 2232 . . . . 5 (𝐴 ∈ ω → (suc 𝐴 ·o ∅) = (𝐴 ·o ∅))
27 peano1 4630 . . . . . . 7 ∅ ∈ ω
28 nnmcl 6539 . . . . . . 7 ((𝐴 ∈ ω ∧ ∅ ∈ ω) → (𝐴 ·o ∅) ∈ ω)
2927, 28mpan2 425 . . . . . 6 (𝐴 ∈ ω → (𝐴 ·o ∅) ∈ ω)
30 nna0 6532 . . . . . 6 ((𝐴 ·o ∅) ∈ ω → ((𝐴 ·o ∅) +o ∅) = (𝐴 ·o ∅))
3129, 30syl 14 . . . . 5 (𝐴 ∈ ω → ((𝐴 ·o ∅) +o ∅) = (𝐴 ·o ∅))
3226, 31eqtr4d 2232 . . . 4 (𝐴 ∈ ω → (suc 𝐴 ·o ∅) = ((𝐴 ·o ∅) +o ∅))
33 oveq1 5929 . . . . . 6 ((suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦) → ((suc 𝐴 ·o 𝑦) +o suc 𝐴) = (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴))
34 peano2b 4651 . . . . . . . 8 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
35 nnmsuc 6535 . . . . . . . 8 ((suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 ·o suc 𝑦) = ((suc 𝐴 ·o 𝑦) +o suc 𝐴))
3634, 35sylanb 284 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 ·o suc 𝑦) = ((suc 𝐴 ·o 𝑦) +o suc 𝐴))
37 nnmcl 6539 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o 𝑦) ∈ ω)
38 peano2b 4651 . . . . . . . . . . . 12 (𝑦 ∈ ω ↔ suc 𝑦 ∈ ω)
39 nnaass 6543 . . . . . . . . . . . 12 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω ∧ suc 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
4038, 39syl3an3b 1287 . . . . . . . . . . 11 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
4137, 40syl3an1 1282 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
42413expb 1206 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
4342anidms 397 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
44 nnmsuc 6535 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
4544oveq1d 5937 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o suc 𝑦) +o suc 𝑦) = (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦))
46 nnaass 6543 . . . . . . . . . . . . . 14 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝑦 ∈ ω ∧ suc 𝐴 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
4734, 46syl3an3b 1287 . . . . . . . . . . . . 13 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
4837, 47syl3an1 1282 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
49483expb 1206 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝑦 ∈ ω ∧ 𝐴 ∈ ω)) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
5049an42s 589 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
5150anidms 397 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
52 nnacom 6542 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) = (𝑦 +o 𝐴))
53 suceq 4437 . . . . . . . . . . . 12 ((𝐴 +o 𝑦) = (𝑦 +o 𝐴) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
5452, 53syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
55 nnasuc 6534 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
56 nnasuc 6534 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
5756ancoms 268 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
5854, 55, 573eqtr4d 2239 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = (𝑦 +o suc 𝐴))
5958oveq2d 5938 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
6051, 59eqtr4d 2232 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
6143, 45, 603eqtr4d 2239 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o suc 𝑦) +o suc 𝑦) = (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴))
6236, 61eqeq12d 2211 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦) ↔ ((suc 𝐴 ·o 𝑦) +o suc 𝐴) = (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴)))
6333, 62imbitrrid 156 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦) → (suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦)))
6463expcom 116 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦) → (suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦))))
6511, 16, 21, 32, 64finds2 4637 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥)))
666, 65vtoclga 2830 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵)))
6766impcom 125 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  c0 3450  suc csuc 4400  ωcom 4626  (class class class)co 5922   +o coa 6471   ·o comu 6472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-oadd 6478  df-omul 6479
This theorem is referenced by:  nnmcom  6547
  Copyright terms: Public domain W3C validator