ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmsucr GIF version

Theorem nnmsucr 6456
Description: Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmsucr ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵))

Proof of Theorem nnmsucr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5850 . . . . 5 (𝑥 = 𝐵 → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o 𝐵))
2 oveq2 5850 . . . . . 6 (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵))
3 id 19 . . . . . 6 (𝑥 = 𝐵𝑥 = 𝐵)
42, 3oveq12d 5860 . . . . 5 (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o 𝐵) +o 𝐵))
51, 4eqeq12d 2180 . . . 4 (𝑥 = 𝐵 → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵)))
65imbi2d 229 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥)) ↔ (𝐴 ∈ ω → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵))))
7 oveq2 5850 . . . . 5 (𝑥 = ∅ → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o ∅))
8 oveq2 5850 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅))
9 id 19 . . . . . 6 (𝑥 = ∅ → 𝑥 = ∅)
108, 9oveq12d 5860 . . . . 5 (𝑥 = ∅ → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o ∅) +o ∅))
117, 10eqeq12d 2180 . . . 4 (𝑥 = ∅ → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o ∅) = ((𝐴 ·o ∅) +o ∅)))
12 oveq2 5850 . . . . 5 (𝑥 = 𝑦 → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o 𝑦))
13 oveq2 5850 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦))
14 id 19 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
1513, 14oveq12d 5860 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o 𝑦) +o 𝑦))
1612, 15eqeq12d 2180 . . . 4 (𝑥 = 𝑦 → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦)))
17 oveq2 5850 . . . . 5 (𝑥 = suc 𝑦 → (suc 𝐴 ·o 𝑥) = (suc 𝐴 ·o suc 𝑦))
18 oveq2 5850 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦))
19 id 19 . . . . . 6 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
2018, 19oveq12d 5860 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) +o 𝑥) = ((𝐴 ·o suc 𝑦) +o suc 𝑦))
2117, 20eqeq12d 2180 . . . 4 (𝑥 = suc 𝑦 → ((suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥) ↔ (suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦)))
22 peano2 4572 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
23 nnm0 6443 . . . . . . 7 (suc 𝐴 ∈ ω → (suc 𝐴 ·o ∅) = ∅)
2422, 23syl 14 . . . . . 6 (𝐴 ∈ ω → (suc 𝐴 ·o ∅) = ∅)
25 nnm0 6443 . . . . . 6 (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅)
2624, 25eqtr4d 2201 . . . . 5 (𝐴 ∈ ω → (suc 𝐴 ·o ∅) = (𝐴 ·o ∅))
27 peano1 4571 . . . . . . 7 ∅ ∈ ω
28 nnmcl 6449 . . . . . . 7 ((𝐴 ∈ ω ∧ ∅ ∈ ω) → (𝐴 ·o ∅) ∈ ω)
2927, 28mpan2 422 . . . . . 6 (𝐴 ∈ ω → (𝐴 ·o ∅) ∈ ω)
30 nna0 6442 . . . . . 6 ((𝐴 ·o ∅) ∈ ω → ((𝐴 ·o ∅) +o ∅) = (𝐴 ·o ∅))
3129, 30syl 14 . . . . 5 (𝐴 ∈ ω → ((𝐴 ·o ∅) +o ∅) = (𝐴 ·o ∅))
3226, 31eqtr4d 2201 . . . 4 (𝐴 ∈ ω → (suc 𝐴 ·o ∅) = ((𝐴 ·o ∅) +o ∅))
33 oveq1 5849 . . . . . 6 ((suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦) → ((suc 𝐴 ·o 𝑦) +o suc 𝐴) = (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴))
34 peano2b 4592 . . . . . . . 8 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
35 nnmsuc 6445 . . . . . . . 8 ((suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 ·o suc 𝑦) = ((suc 𝐴 ·o 𝑦) +o suc 𝐴))
3634, 35sylanb 282 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 ·o suc 𝑦) = ((suc 𝐴 ·o 𝑦) +o suc 𝐴))
37 nnmcl 6449 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o 𝑦) ∈ ω)
38 peano2b 4592 . . . . . . . . . . . 12 (𝑦 ∈ ω ↔ suc 𝑦 ∈ ω)
39 nnaass 6453 . . . . . . . . . . . 12 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω ∧ suc 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
4038, 39syl3an3b 1266 . . . . . . . . . . 11 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
4137, 40syl3an1 1261 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
42413expb 1194 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
4342anidms 395 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
44 nnmsuc 6445 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴))
4544oveq1d 5857 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o suc 𝑦) +o suc 𝑦) = (((𝐴 ·o 𝑦) +o 𝐴) +o suc 𝑦))
46 nnaass 6453 . . . . . . . . . . . . . 14 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝑦 ∈ ω ∧ suc 𝐴 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
4734, 46syl3an3b 1266 . . . . . . . . . . . . 13 (((𝐴 ·o 𝑦) ∈ ω ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
4837, 47syl3an1 1261 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
49483expb 1194 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝑦 ∈ ω ∧ 𝐴 ∈ ω)) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
5049an42s 579 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
5150anidms 395 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
52 nnacom 6452 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) = (𝑦 +o 𝐴))
53 suceq 4380 . . . . . . . . . . . 12 ((𝐴 +o 𝑦) = (𝑦 +o 𝐴) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
5452, 53syl 14 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
55 nnasuc 6444 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
56 nnasuc 6444 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
5756ancoms 266 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
5854, 55, 573eqtr4d 2208 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = (𝑦 +o suc 𝐴))
5958oveq2d 5858 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)) = ((𝐴 ·o 𝑦) +o (𝑦 +o suc 𝐴)))
6051, 59eqtr4d 2201 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴) = ((𝐴 ·o 𝑦) +o (𝐴 +o suc 𝑦)))
6143, 45, 603eqtr4d 2208 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o suc 𝑦) +o suc 𝑦) = (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴))
6236, 61eqeq12d 2180 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦) ↔ ((suc 𝐴 ·o 𝑦) +o suc 𝐴) = (((𝐴 ·o 𝑦) +o 𝑦) +o suc 𝐴)))
6333, 62syl5ibr 155 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦) → (suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦)))
6463expcom 115 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((suc 𝐴 ·o 𝑦) = ((𝐴 ·o 𝑦) +o 𝑦) → (suc 𝐴 ·o suc 𝑦) = ((𝐴 ·o suc 𝑦) +o suc 𝑦))))
6511, 16, 21, 32, 64finds2 4578 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (suc 𝐴 ·o 𝑥) = ((𝐴 ·o 𝑥) +o 𝑥)))
666, 65vtoclga 2792 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵)))
6766impcom 124 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·o 𝐵) = ((𝐴 ·o 𝐵) +o 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  c0 3409  suc csuc 4343  ωcom 4567  (class class class)co 5842   +o coa 6381   ·o comu 6382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389
This theorem is referenced by:  nnmcom  6457
  Copyright terms: Public domain W3C validator