| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enqdc | GIF version | ||
| Description: The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.) |
| Ref | Expression |
|---|---|
| enqdc | ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → DECID 〈𝐴, 𝐵〉 ~Q 〈𝐶, 𝐷〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulclpi 7461 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐷 ∈ N) → (𝐴 ·N 𝐷) ∈ N) | |
| 2 | mulclpi 7461 | . . . 4 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐵 ·N 𝐶) ∈ N) | |
| 3 | pinn 7442 | . . . . 5 ⊢ ((𝐴 ·N 𝐷) ∈ N → (𝐴 ·N 𝐷) ∈ ω) | |
| 4 | pinn 7442 | . . . . 5 ⊢ ((𝐵 ·N 𝐶) ∈ N → (𝐵 ·N 𝐶) ∈ ω) | |
| 5 | nndceq 6598 | . . . . 5 ⊢ (((𝐴 ·N 𝐷) ∈ ω ∧ (𝐵 ·N 𝐶) ∈ ω) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)) | |
| 6 | 3, 4, 5 | syl2an 289 | . . . 4 ⊢ (((𝐴 ·N 𝐷) ∈ N ∧ (𝐵 ·N 𝐶) ∈ N) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)) |
| 7 | 1, 2, 6 | syl2an 289 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐷 ∈ N) ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)) |
| 8 | 7 | an42s 589 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)) |
| 9 | enqbreq 7489 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ~Q 〈𝐶, 𝐷〉 ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))) | |
| 10 | 9 | dcbid 840 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (DECID 〈𝐴, 𝐵〉 ~Q 〈𝐶, 𝐷〉 ↔ DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))) |
| 11 | 8, 10 | mpbird 167 | 1 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → DECID 〈𝐴, 𝐵〉 ~Q 〈𝐶, 𝐷〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 836 = wceq 1373 ∈ wcel 2177 〈cop 3641 class class class wbr 4051 ωcom 4646 (class class class)co 5957 Ncnpi 7405 ·N cmi 7407 ~Q ceq 7412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-oadd 6519 df-omul 6520 df-ni 7437 df-mi 7439 df-enq 7480 |
| This theorem is referenced by: enqdc1 7495 |
| Copyright terms: Public domain | W3C validator |