![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enqdc | GIF version |
Description: The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.) |
Ref | Expression |
---|---|
enqdc | ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → DECID 〈𝐴, 𝐵〉 ~Q 〈𝐶, 𝐷〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulclpi 6984 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 𝐷 ∈ N) → (𝐴 ·N 𝐷) ∈ N) | |
2 | mulclpi 6984 | . . . 4 ⊢ ((𝐵 ∈ N ∧ 𝐶 ∈ N) → (𝐵 ·N 𝐶) ∈ N) | |
3 | pinn 6965 | . . . . 5 ⊢ ((𝐴 ·N 𝐷) ∈ N → (𝐴 ·N 𝐷) ∈ ω) | |
4 | pinn 6965 | . . . . 5 ⊢ ((𝐵 ·N 𝐶) ∈ N → (𝐵 ·N 𝐶) ∈ ω) | |
5 | nndceq 6300 | . . . . 5 ⊢ (((𝐴 ·N 𝐷) ∈ ω ∧ (𝐵 ·N 𝐶) ∈ ω) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)) | |
6 | 3, 4, 5 | syl2an 284 | . . . 4 ⊢ (((𝐴 ·N 𝐷) ∈ N ∧ (𝐵 ·N 𝐶) ∈ N) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)) |
7 | 1, 2, 6 | syl2an 284 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐷 ∈ N) ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)) |
8 | 7 | an42s 557 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)) |
9 | enqbreq 7012 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ~Q 〈𝐶, 𝐷〉 ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))) | |
10 | 9 | dcbid 789 | . 2 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (DECID 〈𝐴, 𝐵〉 ~Q 〈𝐶, 𝐷〉 ↔ DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))) |
11 | 8, 10 | mpbird 166 | 1 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → DECID 〈𝐴, 𝐵〉 ~Q 〈𝐶, 𝐷〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 783 = wceq 1296 ∈ wcel 1445 〈cop 3469 class class class wbr 3867 ωcom 4433 (class class class)co 5690 Ncnpi 6928 ·N cmi 6930 ~Q ceq 6935 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-coll 3975 ax-sep 3978 ax-nul 3986 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-iinf 4431 |
This theorem depends on definitions: df-bi 116 df-dc 784 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-csb 2948 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-nul 3303 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-iun 3754 df-br 3868 df-opab 3922 df-mpt 3923 df-tr 3959 df-id 4144 df-iord 4217 df-on 4219 df-suc 4222 df-iom 4434 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 df-iota 5014 df-fun 5051 df-fn 5052 df-f 5053 df-f1 5054 df-fo 5055 df-f1o 5056 df-fv 5057 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-1st 5949 df-2nd 5950 df-recs 6108 df-irdg 6173 df-oadd 6223 df-omul 6224 df-ni 6960 df-mi 6962 df-enq 7003 |
This theorem is referenced by: enqdc1 7018 |
Copyright terms: Public domain | W3C validator |