ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqdc GIF version

Theorem enqdc 7017
Description: The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.)
Assertion
Ref Expression
enqdc (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → DECID𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩)

Proof of Theorem enqdc
StepHypRef Expression
1 mulclpi 6984 . . . 4 ((𝐴N𝐷N) → (𝐴 ·N 𝐷) ∈ N)
2 mulclpi 6984 . . . 4 ((𝐵N𝐶N) → (𝐵 ·N 𝐶) ∈ N)
3 pinn 6965 . . . . 5 ((𝐴 ·N 𝐷) ∈ N → (𝐴 ·N 𝐷) ∈ ω)
4 pinn 6965 . . . . 5 ((𝐵 ·N 𝐶) ∈ N → (𝐵 ·N 𝐶) ∈ ω)
5 nndceq 6300 . . . . 5 (((𝐴 ·N 𝐷) ∈ ω ∧ (𝐵 ·N 𝐶) ∈ ω) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))
63, 4, 5syl2an 284 . . . 4 (((𝐴 ·N 𝐷) ∈ N ∧ (𝐵 ·N 𝐶) ∈ N) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))
71, 2, 6syl2an 284 . . 3 (((𝐴N𝐷N) ∧ (𝐵N𝐶N)) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))
87an42s 557 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))
9 enqbreq 7012 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩ ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))
109dcbid 789 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (DECID𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩ ↔ DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))
118, 10mpbird 166 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → DECID𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 783   = wceq 1296  wcel 1445  cop 3469   class class class wbr 3867  ωcom 4433  (class class class)co 5690  Ncnpi 6928   ·N cmi 6930   ~Q ceq 6935
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-oadd 6223  df-omul 6224  df-ni 6960  df-mi 6962  df-enq 7003
This theorem is referenced by:  enqdc1  7018
  Copyright terms: Public domain W3C validator