ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqdc GIF version

Theorem enqdc 7363
Description: The equivalence relation for positive fractions is decidable. (Contributed by Jim Kingdon, 7-Sep-2019.)
Assertion
Ref Expression
enqdc (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → DECID𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩)

Proof of Theorem enqdc
StepHypRef Expression
1 mulclpi 7330 . . . 4 ((𝐴N𝐷N) → (𝐴 ·N 𝐷) ∈ N)
2 mulclpi 7330 . . . 4 ((𝐵N𝐶N) → (𝐵 ·N 𝐶) ∈ N)
3 pinn 7311 . . . . 5 ((𝐴 ·N 𝐷) ∈ N → (𝐴 ·N 𝐷) ∈ ω)
4 pinn 7311 . . . . 5 ((𝐵 ·N 𝐶) ∈ N → (𝐵 ·N 𝐶) ∈ ω)
5 nndceq 6503 . . . . 5 (((𝐴 ·N 𝐷) ∈ ω ∧ (𝐵 ·N 𝐶) ∈ ω) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))
63, 4, 5syl2an 289 . . . 4 (((𝐴 ·N 𝐷) ∈ N ∧ (𝐵 ·N 𝐶) ∈ N) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))
71, 2, 6syl2an 289 . . 3 (((𝐴N𝐷N) ∧ (𝐵N𝐶N)) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))
87an42s 589 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))
9 enqbreq 7358 . . 3 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (⟨𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩ ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))
109dcbid 838 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → (DECID𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩ ↔ DECID (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶)))
118, 10mpbird 167 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → DECID𝐴, 𝐵⟩ ~Q𝐶, 𝐷⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 834   = wceq 1353  wcel 2148  cop 3597   class class class wbr 4005  ωcom 4591  (class class class)co 5878  Ncnpi 7274   ·N cmi 7276   ~Q ceq 7281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-oadd 6424  df-omul 6425  df-ni 7306  df-mi 7308  df-enq 7349
This theorem is referenced by:  enqdc1  7364
  Copyright terms: Public domain W3C validator