ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcmpblnq GIF version

Theorem addcmpblnq 7562
Description: Lemma showing compatibility of addition. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
addcmpblnq ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ⟨((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)), (𝐵 ·N 𝐺)⟩ ~Q ⟨((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅)), (𝐷 ·N 𝑆)⟩))

Proof of Theorem addcmpblnq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distrpig 7528 . . . . . . . 8 ((𝑥N𝑦N𝑧N) → (𝑥 ·N (𝑦 +N 𝑧)) = ((𝑥 ·N 𝑦) +N (𝑥 ·N 𝑧)))
21adantl 277 . . . . . . 7 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N𝑧N)) → (𝑥 ·N (𝑦 +N 𝑧)) = ((𝑥 ·N 𝑦) +N (𝑥 ·N 𝑧)))
3 simplll 533 . . . . . . . 8 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐴N)
4 simprlr 538 . . . . . . . 8 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐺N)
5 mulclpi 7523 . . . . . . . 8 ((𝐴N𝐺N) → (𝐴 ·N 𝐺) ∈ N)
63, 4, 5syl2anc 411 . . . . . . 7 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (𝐴 ·N 𝐺) ∈ N)
7 simpllr 534 . . . . . . . 8 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐵N)
8 simprll 537 . . . . . . . 8 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐹N)
9 mulclpi 7523 . . . . . . . 8 ((𝐵N𝐹N) → (𝐵 ·N 𝐹) ∈ N)
107, 8, 9syl2anc 411 . . . . . . 7 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (𝐵 ·N 𝐹) ∈ N)
11 mulclpi 7523 . . . . . . . . 9 ((𝐷N𝑆N) → (𝐷 ·N 𝑆) ∈ N)
1211ad2ant2l 508 . . . . . . . 8 (((𝐶N𝐷N) ∧ (𝑅N𝑆N)) → (𝐷 ·N 𝑆) ∈ N)
1312ad2ant2l 508 . . . . . . 7 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (𝐷 ·N 𝑆) ∈ N)
14 addclpi 7522 . . . . . . . 8 ((𝑥N𝑦N) → (𝑥 +N 𝑦) ∈ N)
1514adantl 277 . . . . . . 7 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N)) → (𝑥 +N 𝑦) ∈ N)
16 mulcompig 7526 . . . . . . . 8 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
1716adantl 277 . . . . . . 7 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥))
182, 6, 10, 13, 15, 17caovdir2d 6188 . . . . . 6 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)) ·N (𝐷 ·N 𝑆)) = (((𝐴 ·N 𝐺) ·N (𝐷 ·N 𝑆)) +N ((𝐵 ·N 𝐹) ·N (𝐷 ·N 𝑆))))
19 simplrr 536 . . . . . . . 8 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐷N)
20 mulasspig 7527 . . . . . . . . 9 ((𝑥N𝑦N𝑧N) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
2120adantl 277 . . . . . . . 8 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N𝑧N)) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧)))
22 simprrr 540 . . . . . . . 8 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝑆N)
23 mulclpi 7523 . . . . . . . . 9 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) ∈ N)
2423adantl 277 . . . . . . . 8 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ (𝑥N𝑦N)) → (𝑥 ·N 𝑦) ∈ N)
253, 4, 19, 17, 21, 22, 24caov4d 6196 . . . . . . 7 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((𝐴 ·N 𝐺) ·N (𝐷 ·N 𝑆)) = ((𝐴 ·N 𝐷) ·N (𝐺 ·N 𝑆)))
267, 8, 19, 17, 21, 22, 24caov4d 6196 . . . . . . 7 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((𝐵 ·N 𝐹) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐷) ·N (𝐹 ·N 𝑆)))
2725, 26oveq12d 6025 . . . . . 6 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐺) ·N (𝐷 ·N 𝑆)) +N ((𝐵 ·N 𝐹) ·N (𝐷 ·N 𝑆))) = (((𝐴 ·N 𝐷) ·N (𝐺 ·N 𝑆)) +N ((𝐵 ·N 𝐷) ·N (𝐹 ·N 𝑆))))
2818, 27eqtrd 2262 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)) ·N (𝐷 ·N 𝑆)) = (((𝐴 ·N 𝐷) ·N (𝐺 ·N 𝑆)) +N ((𝐵 ·N 𝐷) ·N (𝐹 ·N 𝑆))))
29 oveq1 6014 . . . . . 6 ((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) → ((𝐴 ·N 𝐷) ·N (𝐺 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑆)))
30 oveq2 6015 . . . . . 6 ((𝐹 ·N 𝑆) = (𝐺 ·N 𝑅) → ((𝐵 ·N 𝐷) ·N (𝐹 ·N 𝑆)) = ((𝐵 ·N 𝐷) ·N (𝐺 ·N 𝑅)))
3129, 30oveqan12d 6026 . . . . 5 (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → (((𝐴 ·N 𝐷) ·N (𝐺 ·N 𝑆)) +N ((𝐵 ·N 𝐷) ·N (𝐹 ·N 𝑆))) = (((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑆)) +N ((𝐵 ·N 𝐷) ·N (𝐺 ·N 𝑅))))
3228, 31sylan9eq 2282 . . . 4 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ ((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅))) → (((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)) ·N (𝐷 ·N 𝑆)) = (((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑆)) +N ((𝐵 ·N 𝐷) ·N (𝐺 ·N 𝑅))))
33 mulclpi 7523 . . . . . . . 8 ((𝐵N𝐺N) → (𝐵 ·N 𝐺) ∈ N)
347, 4, 33syl2anc 411 . . . . . . 7 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (𝐵 ·N 𝐺) ∈ N)
35 simplrl 535 . . . . . . . 8 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝐶N)
36 mulclpi 7523 . . . . . . . 8 ((𝐶N𝑆N) → (𝐶 ·N 𝑆) ∈ N)
3735, 22, 36syl2anc 411 . . . . . . 7 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (𝐶 ·N 𝑆) ∈ N)
38 simprrl 539 . . . . . . . 8 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → 𝑅N)
39 mulclpi 7523 . . . . . . . 8 ((𝐷N𝑅N) → (𝐷 ·N 𝑅) ∈ N)
4019, 38, 39syl2anc 411 . . . . . . 7 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (𝐷 ·N 𝑅) ∈ N)
41 distrpig 7528 . . . . . . 7 (((𝐵 ·N 𝐺) ∈ N ∧ (𝐶 ·N 𝑆) ∈ N ∧ (𝐷 ·N 𝑅) ∈ N) → ((𝐵 ·N 𝐺) ·N ((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅))) = (((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑆)) +N ((𝐵 ·N 𝐺) ·N (𝐷 ·N 𝑅))))
4234, 37, 40, 41syl3anc 1271 . . . . . 6 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((𝐵 ·N 𝐺) ·N ((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅))) = (((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑆)) +N ((𝐵 ·N 𝐺) ·N (𝐷 ·N 𝑅))))
437, 4, 35, 17, 21, 22, 24caov4d 6196 . . . . . . 7 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑆)) = ((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑆)))
447, 4, 19, 17, 21, 38, 24caov4d 6196 . . . . . . 7 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((𝐵 ·N 𝐺) ·N (𝐷 ·N 𝑅)) = ((𝐵 ·N 𝐷) ·N (𝐺 ·N 𝑅)))
4543, 44oveq12d 6025 . . . . . 6 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐵 ·N 𝐺) ·N (𝐶 ·N 𝑆)) +N ((𝐵 ·N 𝐺) ·N (𝐷 ·N 𝑅))) = (((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑆)) +N ((𝐵 ·N 𝐷) ·N (𝐺 ·N 𝑅))))
4642, 45eqtrd 2262 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((𝐵 ·N 𝐺) ·N ((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅))) = (((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑆)) +N ((𝐵 ·N 𝐷) ·N (𝐺 ·N 𝑅))))
4746adantr 276 . . . 4 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ ((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅))) → ((𝐵 ·N 𝐺) ·N ((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅))) = (((𝐵 ·N 𝐶) ·N (𝐺 ·N 𝑆)) +N ((𝐵 ·N 𝐷) ·N (𝐺 ·N 𝑅))))
4832, 47eqtr4d 2265 . . 3 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ ((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅))) → (((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N ((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅))))
49 addclpi 7522 . . . . . . . . . 10 (((𝐴 ·N 𝐺) ∈ N ∧ (𝐵 ·N 𝐹) ∈ N) → ((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)) ∈ N)
505, 9, 49syl2an 289 . . . . . . . . 9 (((𝐴N𝐺N) ∧ (𝐵N𝐹N)) → ((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)) ∈ N)
5150an42s 591 . . . . . . . 8 (((𝐴N𝐵N) ∧ (𝐹N𝐺N)) → ((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)) ∈ N)
5233ad2ant2l 508 . . . . . . . 8 (((𝐴N𝐵N) ∧ (𝐹N𝐺N)) → (𝐵 ·N 𝐺) ∈ N)
5351, 52jca 306 . . . . . . 7 (((𝐴N𝐵N) ∧ (𝐹N𝐺N)) → (((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N))
54 addclpi 7522 . . . . . . . . . 10 (((𝐶 ·N 𝑆) ∈ N ∧ (𝐷 ·N 𝑅) ∈ N) → ((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅)) ∈ N)
5536, 39, 54syl2an 289 . . . . . . . . 9 (((𝐶N𝑆N) ∧ (𝐷N𝑅N)) → ((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅)) ∈ N)
5655an42s 591 . . . . . . . 8 (((𝐶N𝐷N) ∧ (𝑅N𝑆N)) → ((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅)) ∈ N)
5756, 12jca 306 . . . . . . 7 (((𝐶N𝐷N) ∧ (𝑅N𝑆N)) → (((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅)) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N))
5853, 57anim12i 338 . . . . . 6 ((((𝐴N𝐵N) ∧ (𝐹N𝐺N)) ∧ ((𝐶N𝐷N) ∧ (𝑅N𝑆N))) → ((((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ (((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅)) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)))
5958an4s 590 . . . . 5 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → ((((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ (((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅)) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)))
60 enqbreq 7551 . . . . 5 (((((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)) ∈ N ∧ (𝐵 ·N 𝐺) ∈ N) ∧ (((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅)) ∈ N ∧ (𝐷 ·N 𝑆) ∈ N)) → (⟨((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)), (𝐵 ·N 𝐺)⟩ ~Q ⟨((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅)), (𝐷 ·N 𝑆)⟩ ↔ (((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N ((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅)))))
6159, 60syl 14 . . . 4 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (⟨((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)), (𝐵 ·N 𝐺)⟩ ~Q ⟨((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅)), (𝐷 ·N 𝑆)⟩ ↔ (((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N ((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅)))))
6261adantr 276 . . 3 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ ((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅))) → (⟨((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)), (𝐵 ·N 𝐺)⟩ ~Q ⟨((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅)), (𝐷 ·N 𝑆)⟩ ↔ (((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)) ·N (𝐷 ·N 𝑆)) = ((𝐵 ·N 𝐺) ·N ((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅)))))
6348, 62mpbird 167 . 2 (((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) ∧ ((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅))) → ⟨((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)), (𝐵 ·N 𝐺)⟩ ~Q ⟨((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅)), (𝐷 ·N 𝑆)⟩)
6463ex 115 1 ((((𝐴N𝐵N) ∧ (𝐶N𝐷N)) ∧ ((𝐹N𝐺N) ∧ (𝑅N𝑆N))) → (((𝐴 ·N 𝐷) = (𝐵 ·N 𝐶) ∧ (𝐹 ·N 𝑆) = (𝐺 ·N 𝑅)) → ⟨((𝐴 ·N 𝐺) +N (𝐵 ·N 𝐹)), (𝐵 ·N 𝐺)⟩ ~Q ⟨((𝐶 ·N 𝑆) +N (𝐷 ·N 𝑅)), (𝐷 ·N 𝑆)⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  cop 3669   class class class wbr 4083  (class class class)co 6007  Ncnpi 7467   +N cpli 7468   ·N cmi 7469   ~Q ceq 7474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-oadd 6572  df-omul 6573  df-ni 7499  df-pli 7500  df-mi 7501  df-enq 7542
This theorem is referenced by:  addpipqqs  7565
  Copyright terms: Public domain W3C validator