ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axdistr GIF version

Theorem axdistr 7848
Description: Distributive law for complex numbers (left-distributivity). Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 7890 be used later. Instead, use adddi 7918. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axdistr ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))

Proof of Theorem axdistr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 7815 . 2 ℂ = ((R × R) / E )
2 addcnsrec 7816 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ([⟨𝑧, 𝑤⟩] E + [⟨𝑣, 𝑢⟩] E ) = [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E )
3 mulcnsrec 7817 . 2 (((𝑥R𝑦R) ∧ ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) → ([⟨𝑥, 𝑦⟩] E · [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E ) = [⟨((𝑥 ·R (𝑧 +R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 +R 𝑢)))), ((𝑦 ·R (𝑧 +R 𝑣)) +R (𝑥 ·R (𝑤 +R 𝑢)))⟩] E )
4 mulcnsrec 7817 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑧, 𝑤⟩] E ) = [⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E )
5 mulcnsrec 7817 . 2 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑣, 𝑢⟩] E ) = [⟨((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))), ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢))⟩] E )
6 addcnsrec 7816 . 2 (((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R) ∧ (((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R ∧ ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)) → ([⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E + [⟨((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))), ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢))⟩] E ) = [⟨(((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) +R ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢)))), (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) +R ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)))⟩] E )
7 addclsr 7727 . . . 4 ((𝑧R𝑣R) → (𝑧 +R 𝑣) ∈ R)
8 addclsr 7727 . . . 4 ((𝑤R𝑢R) → (𝑤 +R 𝑢) ∈ R)
97, 8anim12i 338 . . 3 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
109an4s 588 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
11 mulclsr 7728 . . . . 5 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) ∈ R)
12 m1r 7726 . . . . . 6 -1RR
13 mulclsr 7728 . . . . . 6 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) ∈ R)
14 mulclsr 7728 . . . . . 6 ((-1RR ∧ (𝑦 ·R 𝑤) ∈ R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
1512, 13, 14sylancr 414 . . . . 5 ((𝑦R𝑤R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
16 addclsr 7727 . . . . 5 (((𝑥 ·R 𝑧) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑤)) ∈ R) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
1711, 15, 16syl2an 289 . . . 4 (((𝑥R𝑧R) ∧ (𝑦R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
1817an4s 588 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
19 mulclsr 7728 . . . . 5 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) ∈ R)
20 mulclsr 7728 . . . . 5 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) ∈ R)
21 addclsr 7727 . . . . 5 (((𝑦 ·R 𝑧) ∈ R ∧ (𝑥 ·R 𝑤) ∈ R) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
2219, 20, 21syl2anr 290 . . . 4 (((𝑥R𝑤R) ∧ (𝑦R𝑧R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
2322an42s 589 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
2418, 23jca 306 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R))
25 mulclsr 7728 . . . . 5 ((𝑥R𝑣R) → (𝑥 ·R 𝑣) ∈ R)
26 mulclsr 7728 . . . . . 6 ((𝑦R𝑢R) → (𝑦 ·R 𝑢) ∈ R)
27 mulclsr 7728 . . . . . 6 ((-1RR ∧ (𝑦 ·R 𝑢) ∈ R) → (-1R ·R (𝑦 ·R 𝑢)) ∈ R)
2812, 26, 27sylancr 414 . . . . 5 ((𝑦R𝑢R) → (-1R ·R (𝑦 ·R 𝑢)) ∈ R)
29 addclsr 7727 . . . . 5 (((𝑥 ·R 𝑣) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑢)) ∈ R) → ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R)
3025, 28, 29syl2an 289 . . . 4 (((𝑥R𝑣R) ∧ (𝑦R𝑢R)) → ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R)
3130an4s 588 . . 3 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R)
32 mulclsr 7728 . . . . 5 ((𝑦R𝑣R) → (𝑦 ·R 𝑣) ∈ R)
33 mulclsr 7728 . . . . 5 ((𝑥R𝑢R) → (𝑥 ·R 𝑢) ∈ R)
34 addclsr 7727 . . . . 5 (((𝑦 ·R 𝑣) ∈ R ∧ (𝑥 ·R 𝑢) ∈ R) → ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)
3532, 33, 34syl2anr 290 . . . 4 (((𝑥R𝑢R) ∧ (𝑦R𝑣R)) → ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)
3635an42s 589 . . 3 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R)
3731, 36jca 306 . 2 (((𝑥R𝑦R) ∧ (𝑣R𝑢R)) → (((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢))) ∈ R ∧ ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢)) ∈ R))
38 simp1l 1021 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑥R)
39 simp2l 1023 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑧R)
40 simp3l 1025 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑣R)
41 distrsrg 7733 . . . . 5 ((𝑥R𝑧R𝑣R) → (𝑥 ·R (𝑧 +R 𝑣)) = ((𝑥 ·R 𝑧) +R (𝑥 ·R 𝑣)))
4238, 39, 40, 41syl3anc 1238 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R (𝑧 +R 𝑣)) = ((𝑥 ·R 𝑧) +R (𝑥 ·R 𝑣)))
43 simp1r 1022 . . . . . . 7 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑦R)
44 simp2r 1024 . . . . . . 7 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑤R)
45 simp3r 1026 . . . . . . 7 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑢R)
46 distrsrg 7733 . . . . . . 7 ((𝑦R𝑤R𝑢R) → (𝑦 ·R (𝑤 +R 𝑢)) = ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢)))
4743, 44, 45, 46syl3anc 1238 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R (𝑤 +R 𝑢)) = ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢)))
4847oveq2d 5881 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑦 ·R (𝑤 +R 𝑢))) = (-1R ·R ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢))))
4912a1i 9 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → -1RR)
5043, 44, 13syl2anc 411 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R 𝑤) ∈ R)
5143, 45, 26syl2anc 411 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R 𝑢) ∈ R)
52 distrsrg 7733 . . . . . 6 ((-1RR ∧ (𝑦 ·R 𝑤) ∈ R ∧ (𝑦 ·R 𝑢) ∈ R) → (-1R ·R ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢))) = ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢))))
5349, 50, 51, 52syl3anc 1238 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R ((𝑦 ·R 𝑤) +R (𝑦 ·R 𝑢))) = ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢))))
5448, 53eqtrd 2208 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑦 ·R (𝑤 +R 𝑢))) = ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢))))
5542, 54oveq12d 5883 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑥 ·R (𝑧 +R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 +R 𝑢)))) = (((𝑥 ·R 𝑧) +R (𝑥 ·R 𝑣)) +R ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢)))))
5638, 39, 11syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R 𝑧) ∈ R)
5738, 40, 25syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R 𝑣) ∈ R)
5812, 50, 14sylancr 414 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
59 addcomsrg 7729 . . . . 5 ((𝑓R𝑔R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
6059adantl 277 . . . 4 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
61 addasssrg 7730 . . . . 5 ((𝑓R𝑔RR) → ((𝑓 +R 𝑔) +R ) = (𝑓 +R (𝑔 +R )))
6261adantl 277 . . . 4 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔RR)) → ((𝑓 +R 𝑔) +R ) = (𝑓 +R (𝑔 +R )))
6312, 51, 27sylancr 414 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑦 ·R 𝑢)) ∈ R)
64 addclsr 7727 . . . . 5 ((𝑓R𝑔R) → (𝑓 +R 𝑔) ∈ R)
6564adantl 277 . . . 4 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔R)) → (𝑓 +R 𝑔) ∈ R)
6656, 57, 58, 60, 62, 63, 65caov4d 6049 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑥 ·R 𝑧) +R (𝑥 ·R 𝑣)) +R ((-1R ·R (𝑦 ·R 𝑤)) +R (-1R ·R (𝑦 ·R 𝑢)))) = (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) +R ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢)))))
6755, 66eqtrd 2208 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑥 ·R (𝑧 +R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 +R 𝑢)))) = (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) +R ((𝑥 ·R 𝑣) +R (-1R ·R (𝑦 ·R 𝑢)))))
68 distrsrg 7733 . . . . 5 ((𝑦R𝑧R𝑣R) → (𝑦 ·R (𝑧 +R 𝑣)) = ((𝑦 ·R 𝑧) +R (𝑦 ·R 𝑣)))
6943, 39, 40, 68syl3anc 1238 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R (𝑧 +R 𝑣)) = ((𝑦 ·R 𝑧) +R (𝑦 ·R 𝑣)))
70 distrsrg 7733 . . . . 5 ((𝑥R𝑤R𝑢R) → (𝑥 ·R (𝑤 +R 𝑢)) = ((𝑥 ·R 𝑤) +R (𝑥 ·R 𝑢)))
7138, 44, 45, 70syl3anc 1238 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R (𝑤 +R 𝑢)) = ((𝑥 ·R 𝑤) +R (𝑥 ·R 𝑢)))
7269, 71oveq12d 5883 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑦 ·R (𝑧 +R 𝑣)) +R (𝑥 ·R (𝑤 +R 𝑢))) = (((𝑦 ·R 𝑧) +R (𝑦 ·R 𝑣)) +R ((𝑥 ·R 𝑤) +R (𝑥 ·R 𝑢))))
7343, 39, 19syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R 𝑧) ∈ R)
7443, 40, 32syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R 𝑣) ∈ R)
7538, 44, 20syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R 𝑤) ∈ R)
7638, 45, 33syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R 𝑢) ∈ R)
7773, 74, 75, 60, 62, 76, 65caov4d 6049 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑦 ·R 𝑧) +R (𝑦 ·R 𝑣)) +R ((𝑥 ·R 𝑤) +R (𝑥 ·R 𝑢))) = (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) +R ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢))))
7872, 77eqtrd 2208 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑦 ·R (𝑧 +R 𝑣)) +R (𝑥 ·R (𝑤 +R 𝑢))) = (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) +R ((𝑦 ·R 𝑣) +R (𝑥 ·R 𝑢))))
791, 2, 3, 4, 5, 6, 10, 24, 37, 67, 78ecovidi 6637 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2146   E cep 4281  ccnv 4619  (class class class)co 5865  Rcnr 7271  -1Rcm1r 7274   +R cplr 7275   ·R cmr 7276  cc 7784   + caddc 7789   · cmul 7791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-eprel 4283  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-1o 6407  df-2o 6408  df-oadd 6411  df-omul 6412  df-er 6525  df-ec 6527  df-qs 6531  df-ni 7278  df-pli 7279  df-mi 7280  df-lti 7281  df-plpq 7318  df-mpq 7319  df-enq 7321  df-nqqs 7322  df-plqqs 7323  df-mqqs 7324  df-1nqqs 7325  df-rq 7326  df-ltnqqs 7327  df-enq0 7398  df-nq0 7399  df-0nq0 7400  df-plq0 7401  df-mq0 7402  df-inp 7440  df-i1p 7441  df-iplp 7442  df-imp 7443  df-enr 7700  df-nr 7701  df-plr 7702  df-mr 7703  df-m1r 7707  df-c 7792  df-add 7797  df-mul 7798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator