ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomnqg GIF version

Theorem addcomnqg 7090
Description: Addition of positive fractions is commutative. (Contributed by Jim Kingdon, 15-Sep-2019.)
Assertion
Ref Expression
addcomnqg ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴))

Proof of Theorem addcomnqg
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7057 . 2 Q = ((N × N) / ~Q )
2 addpipqqs 7079 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q )
3 addpipqqs 7079 . 2 (((𝑧N𝑤N) ∧ (𝑥N𝑦N)) → ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨((𝑧 ·N 𝑦) +N (𝑤 ·N 𝑥)), (𝑤 ·N 𝑦)⟩] ~Q )
4 mulcompig 7040 . . . . 5 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) = (𝑤 ·N 𝑥))
5 mulcompig 7040 . . . . 5 ((𝑦N𝑧N) → (𝑦 ·N 𝑧) = (𝑧 ·N 𝑦))
64, 5oveqan12d 5725 . . . 4 (((𝑥N𝑤N) ∧ (𝑦N𝑧N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) = ((𝑤 ·N 𝑥) +N (𝑧 ·N 𝑦)))
76an42s 559 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) = ((𝑤 ·N 𝑥) +N (𝑧 ·N 𝑦)))
8 mulclpi 7037 . . . . . 6 ((𝑤N𝑥N) → (𝑤 ·N 𝑥) ∈ N)
98ancoms 266 . . . . 5 ((𝑥N𝑤N) → (𝑤 ·N 𝑥) ∈ N)
109ad2ant2rl 498 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑤 ·N 𝑥) ∈ N)
11 mulclpi 7037 . . . . . 6 ((𝑧N𝑦N) → (𝑧 ·N 𝑦) ∈ N)
1211ancoms 266 . . . . 5 ((𝑦N𝑧N) → (𝑧 ·N 𝑦) ∈ N)
1312ad2ant2lr 497 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑧 ·N 𝑦) ∈ N)
14 addcompig 7038 . . . 4 (((𝑤 ·N 𝑥) ∈ N ∧ (𝑧 ·N 𝑦) ∈ N) → ((𝑤 ·N 𝑥) +N (𝑧 ·N 𝑦)) = ((𝑧 ·N 𝑦) +N (𝑤 ·N 𝑥)))
1510, 13, 14syl2anc 406 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑤 ·N 𝑥) +N (𝑧 ·N 𝑦)) = ((𝑧 ·N 𝑦) +N (𝑤 ·N 𝑥)))
167, 15eqtrd 2132 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) = ((𝑧 ·N 𝑦) +N (𝑤 ·N 𝑥)))
17 mulcompig 7040 . . 3 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) = (𝑤 ·N 𝑦))
1817ad2ant2l 495 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑤) = (𝑤 ·N 𝑦))
191, 2, 3, 16, 18ecovicom 6467 1 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448  (class class class)co 5706  Ncnpi 6981   +N cpli 6982   ·N cmi 6983   ~Q ceq 6988  Qcnq 6989   +Q cplq 6991
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-plpq 7053  df-enq 7056  df-nqqs 7057  df-plqqs 7058
This theorem is referenced by:  lt2addnq  7113  ltaddnq  7116  prarloclemarch2  7128  addlocprlemeqgt  7241  addlocprlemgt  7243  addclpr  7246  prmuloclemcalc  7274  addcomprg  7287  distrlem4prl  7293  distrlem4pru  7294  ltexprlemm  7309  ltexprlemdisj  7315  ltexprlemloc  7316  ltexprlemfl  7318  ltexprlemrl  7319  ltexprlemfu  7320  ltexprlemru  7321  addcanprleml  7323  addcanprlemu  7324  prplnqu  7329  aptiprleml  7348  aptiprlemu  7349  cauappcvgprlemopl  7355  cauappcvgprlemlol  7356  cauappcvgprlemdisj  7360  cauappcvgprlemloc  7361  cauappcvgprlemladdfu  7363  cauappcvgprlemladdfl  7364  cauappcvgprlemladdru  7365  cauappcvgprlemladdrl  7366  cauappcvgprlem1  7368  caucvgprlemnkj  7375  caucvgprlemnbj  7376  caucvgprlemopl  7378  caucvgprlemlol  7379  caucvgprlemloc  7384  caucvgprlemladdfu  7386  caucvgprlemladdrl  7387  caucvgprprlemopl  7406  caucvgprprlemlol  7407
  Copyright terms: Public domain W3C validator