ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomnqg GIF version

Theorem addcomnqg 7501
Description: Addition of positive fractions is commutative. (Contributed by Jim Kingdon, 15-Sep-2019.)
Assertion
Ref Expression
addcomnqg ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴))

Proof of Theorem addcomnqg
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7468 . 2 Q = ((N × N) / ~Q )
2 addpipqqs 7490 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q )
3 addpipqqs 7490 . 2 (((𝑧N𝑤N) ∧ (𝑥N𝑦N)) → ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨((𝑧 ·N 𝑦) +N (𝑤 ·N 𝑥)), (𝑤 ·N 𝑦)⟩] ~Q )
4 mulcompig 7451 . . . . 5 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) = (𝑤 ·N 𝑥))
5 mulcompig 7451 . . . . 5 ((𝑦N𝑧N) → (𝑦 ·N 𝑧) = (𝑧 ·N 𝑦))
64, 5oveqan12d 5970 . . . 4 (((𝑥N𝑤N) ∧ (𝑦N𝑧N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) = ((𝑤 ·N 𝑥) +N (𝑧 ·N 𝑦)))
76an42s 589 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) = ((𝑤 ·N 𝑥) +N (𝑧 ·N 𝑦)))
8 mulclpi 7448 . . . . . 6 ((𝑤N𝑥N) → (𝑤 ·N 𝑥) ∈ N)
98ancoms 268 . . . . 5 ((𝑥N𝑤N) → (𝑤 ·N 𝑥) ∈ N)
109ad2ant2rl 511 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑤 ·N 𝑥) ∈ N)
11 mulclpi 7448 . . . . . 6 ((𝑧N𝑦N) → (𝑧 ·N 𝑦) ∈ N)
1211ancoms 268 . . . . 5 ((𝑦N𝑧N) → (𝑧 ·N 𝑦) ∈ N)
1312ad2ant2lr 510 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑧 ·N 𝑦) ∈ N)
14 addcompig 7449 . . . 4 (((𝑤 ·N 𝑥) ∈ N ∧ (𝑧 ·N 𝑦) ∈ N) → ((𝑤 ·N 𝑥) +N (𝑧 ·N 𝑦)) = ((𝑧 ·N 𝑦) +N (𝑤 ·N 𝑥)))
1510, 13, 14syl2anc 411 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑤 ·N 𝑥) +N (𝑧 ·N 𝑦)) = ((𝑧 ·N 𝑦) +N (𝑤 ·N 𝑥)))
167, 15eqtrd 2239 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) = ((𝑧 ·N 𝑦) +N (𝑤 ·N 𝑥)))
17 mulcompig 7451 . . 3 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) = (𝑤 ·N 𝑦))
1817ad2ant2l 508 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑤) = (𝑤 ·N 𝑦))
191, 2, 3, 16, 18ecovicom 6737 1 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  (class class class)co 5951  Ncnpi 7392   +N cpli 7393   ·N cmi 7394   ~Q ceq 7399  Qcnq 7400   +Q cplq 7402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-pli 7425  df-mi 7426  df-plpq 7464  df-enq 7467  df-nqqs 7468  df-plqqs 7469
This theorem is referenced by:  lt2addnq  7524  ltaddnq  7527  prarloclemarch2  7539  addlocprlemeqgt  7652  addlocprlemgt  7654  addclpr  7657  prmuloclemcalc  7685  addcomprg  7698  distrlem4prl  7704  distrlem4pru  7705  ltexprlemm  7720  ltexprlemdisj  7726  ltexprlemloc  7727  ltexprlemfl  7729  ltexprlemrl  7730  ltexprlemfu  7731  ltexprlemru  7732  addcanprleml  7734  addcanprlemu  7735  prplnqu  7740  aptiprleml  7759  aptiprlemu  7760  cauappcvgprlemopl  7766  cauappcvgprlemlol  7767  cauappcvgprlemdisj  7771  cauappcvgprlemloc  7772  cauappcvgprlemladdfu  7774  cauappcvgprlemladdfl  7775  cauappcvgprlemladdru  7776  cauappcvgprlemladdrl  7777  cauappcvgprlem1  7779  caucvgprlemnkj  7786  caucvgprlemnbj  7787  caucvgprlemopl  7789  caucvgprlemlol  7790  caucvgprlemloc  7795  caucvgprlemladdfu  7797  caucvgprlemladdrl  7798  caucvgprprlemopl  7817  caucvgprprlemlol  7818
  Copyright terms: Public domain W3C validator