ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomnqg GIF version

Theorem addcomnqg 7467
Description: Addition of positive fractions is commutative. (Contributed by Jim Kingdon, 15-Sep-2019.)
Assertion
Ref Expression
addcomnqg ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴))

Proof of Theorem addcomnqg
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7434 . 2 Q = ((N × N) / ~Q )
2 addpipqqs 7456 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q +Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)), (𝑦 ·N 𝑤)⟩] ~Q )
3 addpipqqs 7456 . 2 (((𝑧N𝑤N) ∧ (𝑥N𝑦N)) → ([⟨𝑧, 𝑤⟩] ~Q +Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨((𝑧 ·N 𝑦) +N (𝑤 ·N 𝑥)), (𝑤 ·N 𝑦)⟩] ~Q )
4 mulcompig 7417 . . . . 5 ((𝑥N𝑤N) → (𝑥 ·N 𝑤) = (𝑤 ·N 𝑥))
5 mulcompig 7417 . . . . 5 ((𝑦N𝑧N) → (𝑦 ·N 𝑧) = (𝑧 ·N 𝑦))
64, 5oveqan12d 5944 . . . 4 (((𝑥N𝑤N) ∧ (𝑦N𝑧N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) = ((𝑤 ·N 𝑥) +N (𝑧 ·N 𝑦)))
76an42s 589 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) = ((𝑤 ·N 𝑥) +N (𝑧 ·N 𝑦)))
8 mulclpi 7414 . . . . . 6 ((𝑤N𝑥N) → (𝑤 ·N 𝑥) ∈ N)
98ancoms 268 . . . . 5 ((𝑥N𝑤N) → (𝑤 ·N 𝑥) ∈ N)
109ad2ant2rl 511 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑤 ·N 𝑥) ∈ N)
11 mulclpi 7414 . . . . . 6 ((𝑧N𝑦N) → (𝑧 ·N 𝑦) ∈ N)
1211ancoms 268 . . . . 5 ((𝑦N𝑧N) → (𝑧 ·N 𝑦) ∈ N)
1312ad2ant2lr 510 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑧 ·N 𝑦) ∈ N)
14 addcompig 7415 . . . 4 (((𝑤 ·N 𝑥) ∈ N ∧ (𝑧 ·N 𝑦) ∈ N) → ((𝑤 ·N 𝑥) +N (𝑧 ·N 𝑦)) = ((𝑧 ·N 𝑦) +N (𝑤 ·N 𝑥)))
1510, 13, 14syl2anc 411 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑤 ·N 𝑥) +N (𝑧 ·N 𝑦)) = ((𝑧 ·N 𝑦) +N (𝑤 ·N 𝑥)))
167, 15eqtrd 2229 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ((𝑥 ·N 𝑤) +N (𝑦 ·N 𝑧)) = ((𝑧 ·N 𝑦) +N (𝑤 ·N 𝑥)))
17 mulcompig 7417 . . 3 ((𝑦N𝑤N) → (𝑦 ·N 𝑤) = (𝑤 ·N 𝑦))
1817ad2ant2l 508 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → (𝑦 ·N 𝑤) = (𝑤 ·N 𝑦))
191, 2, 3, 16, 18ecovicom 6711 1 ((𝐴Q𝐵Q) → (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  (class class class)co 5925  Ncnpi 7358   +N cpli 7359   ·N cmi 7360   ~Q ceq 7365  Qcnq 7366   +Q cplq 7368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7390  df-pli 7391  df-mi 7392  df-plpq 7430  df-enq 7433  df-nqqs 7434  df-plqqs 7435
This theorem is referenced by:  lt2addnq  7490  ltaddnq  7493  prarloclemarch2  7505  addlocprlemeqgt  7618  addlocprlemgt  7620  addclpr  7623  prmuloclemcalc  7651  addcomprg  7664  distrlem4prl  7670  distrlem4pru  7671  ltexprlemm  7686  ltexprlemdisj  7692  ltexprlemloc  7693  ltexprlemfl  7695  ltexprlemrl  7696  ltexprlemfu  7697  ltexprlemru  7698  addcanprleml  7700  addcanprlemu  7701  prplnqu  7706  aptiprleml  7725  aptiprlemu  7726  cauappcvgprlemopl  7732  cauappcvgprlemlol  7733  cauappcvgprlemdisj  7737  cauappcvgprlemloc  7738  cauappcvgprlemladdfu  7740  cauappcvgprlemladdfl  7741  cauappcvgprlemladdru  7742  cauappcvgprlemladdrl  7743  cauappcvgprlem1  7745  caucvgprlemnkj  7752  caucvgprlemnbj  7753  caucvgprlemopl  7755  caucvgprlemlol  7756  caucvgprlemloc  7761  caucvgprlemladdfu  7763  caucvgprlemladdrl  7764  caucvgprprlemopl  7783  caucvgprprlemlol  7784
  Copyright terms: Public domain W3C validator