ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expap0 GIF version

Theorem expap0 10291
Description: Positive integer exponentiation is apart from zero iff its mantissa is apart from zero. That it is easier to prove this first, and then prove expeq0 10292 in terms of it, rather than the other way around, is perhaps an illustration of the maxim "In constructive analysis, the apartness is more basic [ than ] equality." (Remark of [Geuvers], p. 1). (Contributed by Jim Kingdon, 10-Jun-2020.)
Assertion
Ref Expression
expap0 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) # 0 ↔ 𝐴 # 0))

Proof of Theorem expap0
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5750 . . . . . 6 (𝑗 = 1 → (𝐴𝑗) = (𝐴↑1))
21breq1d 3909 . . . . 5 (𝑗 = 1 → ((𝐴𝑗) # 0 ↔ (𝐴↑1) # 0))
32bibi1d 232 . . . 4 (𝑗 = 1 → (((𝐴𝑗) # 0 ↔ 𝐴 # 0) ↔ ((𝐴↑1) # 0 ↔ 𝐴 # 0)))
43imbi2d 229 . . 3 (𝑗 = 1 → ((𝐴 ∈ ℂ → ((𝐴𝑗) # 0 ↔ 𝐴 # 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑1) # 0 ↔ 𝐴 # 0))))
5 oveq2 5750 . . . . . 6 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
65breq1d 3909 . . . . 5 (𝑗 = 𝑘 → ((𝐴𝑗) # 0 ↔ (𝐴𝑘) # 0))
76bibi1d 232 . . . 4 (𝑗 = 𝑘 → (((𝐴𝑗) # 0 ↔ 𝐴 # 0) ↔ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)))
87imbi2d 229 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → ((𝐴𝑗) # 0 ↔ 𝐴 # 0)) ↔ (𝐴 ∈ ℂ → ((𝐴𝑘) # 0 ↔ 𝐴 # 0))))
9 oveq2 5750 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
109breq1d 3909 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) # 0 ↔ (𝐴↑(𝑘 + 1)) # 0))
1110bibi1d 232 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴𝑗) # 0 ↔ 𝐴 # 0) ↔ ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0)))
1211imbi2d 229 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → ((𝐴𝑗) # 0 ↔ 𝐴 # 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0))))
13 oveq2 5750 . . . . . 6 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1413breq1d 3909 . . . . 5 (𝑗 = 𝑁 → ((𝐴𝑗) # 0 ↔ (𝐴𝑁) # 0))
1514bibi1d 232 . . . 4 (𝑗 = 𝑁 → (((𝐴𝑗) # 0 ↔ 𝐴 # 0) ↔ ((𝐴𝑁) # 0 ↔ 𝐴 # 0)))
1615imbi2d 229 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → ((𝐴𝑗) # 0 ↔ 𝐴 # 0)) ↔ (𝐴 ∈ ℂ → ((𝐴𝑁) # 0 ↔ 𝐴 # 0))))
17 exp1 10267 . . . 4 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1817breq1d 3909 . . 3 (𝐴 ∈ ℂ → ((𝐴↑1) # 0 ↔ 𝐴 # 0))
19 nnnn0 8952 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
20 expp1 10268 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2120breq1d 3909 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) # 0 ↔ ((𝐴𝑘) · 𝐴) # 0))
2221ancoms 266 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((𝐴↑(𝑘 + 1)) # 0 ↔ ((𝐴𝑘) · 𝐴) # 0))
2319, 22sylan 281 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((𝐴↑(𝑘 + 1)) # 0 ↔ ((𝐴𝑘) · 𝐴) # 0))
2423adantr 274 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → ((𝐴↑(𝑘 + 1)) # 0 ↔ ((𝐴𝑘) · 𝐴) # 0))
25 simplr 504 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → 𝐴 ∈ ℂ)
2619ad2antrr 479 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → 𝑘 ∈ ℕ0)
27 expcl 10279 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
2825, 26, 27syl2anc 408 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → (𝐴𝑘) ∈ ℂ)
2928, 25mulap0bd 8386 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → (((𝐴𝑘) # 0 ∧ 𝐴 # 0) ↔ ((𝐴𝑘) · 𝐴) # 0))
30 anbi1 461 . . . . . . . 8 (((𝐴𝑘) # 0 ↔ 𝐴 # 0) → (((𝐴𝑘) # 0 ∧ 𝐴 # 0) ↔ (𝐴 # 0 ∧ 𝐴 # 0)))
3130adantl 275 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → (((𝐴𝑘) # 0 ∧ 𝐴 # 0) ↔ (𝐴 # 0 ∧ 𝐴 # 0)))
3224, 29, 313bitr2d 215 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → ((𝐴↑(𝑘 + 1)) # 0 ↔ (𝐴 # 0 ∧ 𝐴 # 0)))
33 anidm 393 . . . . . 6 ((𝐴 # 0 ∧ 𝐴 # 0) ↔ 𝐴 # 0)
3432, 33syl6bb 195 . . . . 5 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0))
3534exp31 361 . . . 4 (𝑘 ∈ ℕ → (𝐴 ∈ ℂ → (((𝐴𝑘) # 0 ↔ 𝐴 # 0) → ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0))))
3635a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ → ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0))))
374, 8, 12, 16, 18, 36nnind 8704 . 2 (𝑁 ∈ ℕ → (𝐴 ∈ ℂ → ((𝐴𝑁) # 0 ↔ 𝐴 # 0)))
3837impcom 124 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) # 0 ↔ 𝐴 # 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465   class class class wbr 3899  (class class class)co 5742  cc 7586  0cc0 7588  1c1 7589   + caddc 7591   · cmul 7593   # cap 8311  cn 8688  0cn0 8945  cexp 10260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295  df-seqfrec 10187  df-exp 10261
This theorem is referenced by:  expeq0  10292  abs00ap  10802
  Copyright terms: Public domain W3C validator