ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expap0 GIF version

Theorem expap0 10721
Description: Positive integer exponentiation is apart from zero iff its base is apart from zero. That it is easier to prove this first, and then prove expeq0 10722 in terms of it, rather than the other way around, is perhaps an illustration of the maxim "In constructive analysis, the apartness is more basic [ than ] equality." (Remark of [Geuvers], p. 1). (Contributed by Jim Kingdon, 10-Jun-2020.)
Assertion
Ref Expression
expap0 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) # 0 ↔ 𝐴 # 0))

Proof of Theorem expap0
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5959 . . . . . 6 (𝑗 = 1 → (𝐴𝑗) = (𝐴↑1))
21breq1d 4057 . . . . 5 (𝑗 = 1 → ((𝐴𝑗) # 0 ↔ (𝐴↑1) # 0))
32bibi1d 233 . . . 4 (𝑗 = 1 → (((𝐴𝑗) # 0 ↔ 𝐴 # 0) ↔ ((𝐴↑1) # 0 ↔ 𝐴 # 0)))
43imbi2d 230 . . 3 (𝑗 = 1 → ((𝐴 ∈ ℂ → ((𝐴𝑗) # 0 ↔ 𝐴 # 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑1) # 0 ↔ 𝐴 # 0))))
5 oveq2 5959 . . . . . 6 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
65breq1d 4057 . . . . 5 (𝑗 = 𝑘 → ((𝐴𝑗) # 0 ↔ (𝐴𝑘) # 0))
76bibi1d 233 . . . 4 (𝑗 = 𝑘 → (((𝐴𝑗) # 0 ↔ 𝐴 # 0) ↔ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)))
87imbi2d 230 . . 3 (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → ((𝐴𝑗) # 0 ↔ 𝐴 # 0)) ↔ (𝐴 ∈ ℂ → ((𝐴𝑘) # 0 ↔ 𝐴 # 0))))
9 oveq2 5959 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝐴𝑗) = (𝐴↑(𝑘 + 1)))
109breq1d 4057 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝐴𝑗) # 0 ↔ (𝐴↑(𝑘 + 1)) # 0))
1110bibi1d 233 . . . 4 (𝑗 = (𝑘 + 1) → (((𝐴𝑗) # 0 ↔ 𝐴 # 0) ↔ ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0)))
1211imbi2d 230 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → ((𝐴𝑗) # 0 ↔ 𝐴 # 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0))))
13 oveq2 5959 . . . . . 6 (𝑗 = 𝑁 → (𝐴𝑗) = (𝐴𝑁))
1413breq1d 4057 . . . . 5 (𝑗 = 𝑁 → ((𝐴𝑗) # 0 ↔ (𝐴𝑁) # 0))
1514bibi1d 233 . . . 4 (𝑗 = 𝑁 → (((𝐴𝑗) # 0 ↔ 𝐴 # 0) ↔ ((𝐴𝑁) # 0 ↔ 𝐴 # 0)))
1615imbi2d 230 . . 3 (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → ((𝐴𝑗) # 0 ↔ 𝐴 # 0)) ↔ (𝐴 ∈ ℂ → ((𝐴𝑁) # 0 ↔ 𝐴 # 0))))
17 exp1 10697 . . . 4 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1817breq1d 4057 . . 3 (𝐴 ∈ ℂ → ((𝐴↑1) # 0 ↔ 𝐴 # 0))
19 nnnn0 9309 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
20 expp1 10698 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2120breq1d 4057 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑(𝑘 + 1)) # 0 ↔ ((𝐴𝑘) · 𝐴) # 0))
2221ancoms 268 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((𝐴↑(𝑘 + 1)) # 0 ↔ ((𝐴𝑘) · 𝐴) # 0))
2319, 22sylan 283 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((𝐴↑(𝑘 + 1)) # 0 ↔ ((𝐴𝑘) · 𝐴) # 0))
2423adantr 276 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → ((𝐴↑(𝑘 + 1)) # 0 ↔ ((𝐴𝑘) · 𝐴) # 0))
25 simplr 528 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → 𝐴 ∈ ℂ)
2619ad2antrr 488 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → 𝑘 ∈ ℕ0)
27 expcl 10709 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
2825, 26, 27syl2anc 411 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → (𝐴𝑘) ∈ ℂ)
2928, 25mulap0bd 8737 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → (((𝐴𝑘) # 0 ∧ 𝐴 # 0) ↔ ((𝐴𝑘) · 𝐴) # 0))
30 anbi1 466 . . . . . . . 8 (((𝐴𝑘) # 0 ↔ 𝐴 # 0) → (((𝐴𝑘) # 0 ∧ 𝐴 # 0) ↔ (𝐴 # 0 ∧ 𝐴 # 0)))
3130adantl 277 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → (((𝐴𝑘) # 0 ∧ 𝐴 # 0) ↔ (𝐴 # 0 ∧ 𝐴 # 0)))
3224, 29, 313bitr2d 216 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → ((𝐴↑(𝑘 + 1)) # 0 ↔ (𝐴 # 0 ∧ 𝐴 # 0)))
33 anidm 396 . . . . . 6 ((𝐴 # 0 ∧ 𝐴 # 0) ↔ 𝐴 # 0)
3432, 33bitrdi 196 . . . . 5 (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0))
3534exp31 364 . . . 4 (𝑘 ∈ ℕ → (𝐴 ∈ ℂ → (((𝐴𝑘) # 0 ↔ 𝐴 # 0) → ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0))))
3635a2d 26 . . 3 (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ → ((𝐴𝑘) # 0 ↔ 𝐴 # 0)) → (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0))))
374, 8, 12, 16, 18, 36nnind 9059 . 2 (𝑁 ∈ ℕ → (𝐴 ∈ ℂ → ((𝐴𝑁) # 0 ↔ 𝐴 # 0)))
3837impcom 125 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) # 0 ↔ 𝐴 # 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177   class class class wbr 4047  (class class class)co 5951  cc 7930  0cc0 7932  1c1 7933   + caddc 7935   · cmul 7937   # cap 8661  cn 9043  0cn0 9302  cexp 10690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-n0 9303  df-z 9380  df-uz 9656  df-seqfrec 10600  df-exp 10691
This theorem is referenced by:  expeq0  10722  abs00ap  11417
  Copyright terms: Public domain W3C validator