| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 5930 |
. . . . . 6
⊢ (𝑗 = 1 → (𝐴↑𝑗) = (𝐴↑1)) |
| 2 | 1 | breq1d 4043 |
. . . . 5
⊢ (𝑗 = 1 → ((𝐴↑𝑗) # 0 ↔ (𝐴↑1) # 0)) |
| 3 | 2 | bibi1d 233 |
. . . 4
⊢ (𝑗 = 1 → (((𝐴↑𝑗) # 0 ↔ 𝐴 # 0) ↔ ((𝐴↑1) # 0 ↔ 𝐴 # 0))) |
| 4 | 3 | imbi2d 230 |
. . 3
⊢ (𝑗 = 1 → ((𝐴 ∈ ℂ → ((𝐴↑𝑗) # 0 ↔ 𝐴 # 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑1) # 0 ↔ 𝐴 # 0)))) |
| 5 | | oveq2 5930 |
. . . . . 6
⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) |
| 6 | 5 | breq1d 4043 |
. . . . 5
⊢ (𝑗 = 𝑘 → ((𝐴↑𝑗) # 0 ↔ (𝐴↑𝑘) # 0)) |
| 7 | 6 | bibi1d 233 |
. . . 4
⊢ (𝑗 = 𝑘 → (((𝐴↑𝑗) # 0 ↔ 𝐴 # 0) ↔ ((𝐴↑𝑘) # 0 ↔ 𝐴 # 0))) |
| 8 | 7 | imbi2d 230 |
. . 3
⊢ (𝑗 = 𝑘 → ((𝐴 ∈ ℂ → ((𝐴↑𝑗) # 0 ↔ 𝐴 # 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑𝑘) # 0 ↔ 𝐴 # 0)))) |
| 9 | | oveq2 5930 |
. . . . . 6
⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) |
| 10 | 9 | breq1d 4043 |
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → ((𝐴↑𝑗) # 0 ↔ (𝐴↑(𝑘 + 1)) # 0)) |
| 11 | 10 | bibi1d 233 |
. . . 4
⊢ (𝑗 = (𝑘 + 1) → (((𝐴↑𝑗) # 0 ↔ 𝐴 # 0) ↔ ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0))) |
| 12 | 11 | imbi2d 230 |
. . 3
⊢ (𝑗 = (𝑘 + 1) → ((𝐴 ∈ ℂ → ((𝐴↑𝑗) # 0 ↔ 𝐴 # 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0)))) |
| 13 | | oveq2 5930 |
. . . . . 6
⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) |
| 14 | 13 | breq1d 4043 |
. . . . 5
⊢ (𝑗 = 𝑁 → ((𝐴↑𝑗) # 0 ↔ (𝐴↑𝑁) # 0)) |
| 15 | 14 | bibi1d 233 |
. . . 4
⊢ (𝑗 = 𝑁 → (((𝐴↑𝑗) # 0 ↔ 𝐴 # 0) ↔ ((𝐴↑𝑁) # 0 ↔ 𝐴 # 0))) |
| 16 | 15 | imbi2d 230 |
. . 3
⊢ (𝑗 = 𝑁 → ((𝐴 ∈ ℂ → ((𝐴↑𝑗) # 0 ↔ 𝐴 # 0)) ↔ (𝐴 ∈ ℂ → ((𝐴↑𝑁) # 0 ↔ 𝐴 # 0)))) |
| 17 | | exp1 10637 |
. . . 4
⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
| 18 | 17 | breq1d 4043 |
. . 3
⊢ (𝐴 ∈ ℂ → ((𝐴↑1) # 0 ↔ 𝐴 # 0)) |
| 19 | | nnnn0 9256 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
| 20 | | expp1 10638 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
| 21 | 20 | breq1d 4043 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑(𝑘 + 1)) # 0 ↔ ((𝐴↑𝑘) · 𝐴) # 0)) |
| 22 | 21 | ancoms 268 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ 𝐴 ∈ ℂ)
→ ((𝐴↑(𝑘 + 1)) # 0 ↔ ((𝐴↑𝑘) · 𝐴) # 0)) |
| 23 | 19, 22 | sylan 283 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) → ((𝐴↑(𝑘 + 1)) # 0 ↔ ((𝐴↑𝑘) · 𝐴) # 0)) |
| 24 | 23 | adantr 276 |
. . . . . . 7
⊢ (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴↑𝑘) # 0 ↔ 𝐴 # 0)) → ((𝐴↑(𝑘 + 1)) # 0 ↔ ((𝐴↑𝑘) · 𝐴) # 0)) |
| 25 | | simplr 528 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴↑𝑘) # 0 ↔ 𝐴 # 0)) → 𝐴 ∈ ℂ) |
| 26 | 19 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴↑𝑘) # 0 ↔ 𝐴 # 0)) → 𝑘 ∈ ℕ0) |
| 27 | | expcl 10649 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) |
| 28 | 25, 26, 27 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴↑𝑘) # 0 ↔ 𝐴 # 0)) → (𝐴↑𝑘) ∈ ℂ) |
| 29 | 28, 25 | mulap0bd 8684 |
. . . . . . 7
⊢ (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴↑𝑘) # 0 ↔ 𝐴 # 0)) → (((𝐴↑𝑘) # 0 ∧ 𝐴 # 0) ↔ ((𝐴↑𝑘) · 𝐴) # 0)) |
| 30 | | anbi1 466 |
. . . . . . . 8
⊢ (((𝐴↑𝑘) # 0 ↔ 𝐴 # 0) → (((𝐴↑𝑘) # 0 ∧ 𝐴 # 0) ↔ (𝐴 # 0 ∧ 𝐴 # 0))) |
| 31 | 30 | adantl 277 |
. . . . . . 7
⊢ (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴↑𝑘) # 0 ↔ 𝐴 # 0)) → (((𝐴↑𝑘) # 0 ∧ 𝐴 # 0) ↔ (𝐴 # 0 ∧ 𝐴 # 0))) |
| 32 | 24, 29, 31 | 3bitr2d 216 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴↑𝑘) # 0 ↔ 𝐴 # 0)) → ((𝐴↑(𝑘 + 1)) # 0 ↔ (𝐴 # 0 ∧ 𝐴 # 0))) |
| 33 | | anidm 396 |
. . . . . 6
⊢ ((𝐴 # 0 ∧ 𝐴 # 0) ↔ 𝐴 # 0) |
| 34 | 32, 33 | bitrdi 196 |
. . . . 5
⊢ (((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℂ) ∧ ((𝐴↑𝑘) # 0 ↔ 𝐴 # 0)) → ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0)) |
| 35 | 34 | exp31 364 |
. . . 4
⊢ (𝑘 ∈ ℕ → (𝐴 ∈ ℂ → (((𝐴↑𝑘) # 0 ↔ 𝐴 # 0) → ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0)))) |
| 36 | 35 | a2d 26 |
. . 3
⊢ (𝑘 ∈ ℕ → ((𝐴 ∈ ℂ → ((𝐴↑𝑘) # 0 ↔ 𝐴 # 0)) → (𝐴 ∈ ℂ → ((𝐴↑(𝑘 + 1)) # 0 ↔ 𝐴 # 0)))) |
| 37 | 4, 8, 12, 16, 18, 36 | nnind 9006 |
. 2
⊢ (𝑁 ∈ ℕ → (𝐴 ∈ ℂ → ((𝐴↑𝑁) # 0 ↔ 𝐴 # 0))) |
| 38 | 37 | impcom 125 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) # 0 ↔ 𝐴 # 0)) |