Step | Hyp | Ref
| Expression |
1 | | bezoutlemgcd.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℤ) |
2 | | bezoutlemgcd.2 |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℤ) |
3 | | bezoutlembi 11960 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
∃𝑑 ∈
ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
4 | | simpl 108 |
. . . . 5
⊢
((∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
5 | 4 | reximi 2567 |
. . . 4
⊢
(∃𝑑 ∈
ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → ∃𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
6 | 3, 5 | syl 14 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
∃𝑑 ∈
ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
7 | 1, 2, 6 | syl2anc 409 |
. 2
⊢ (𝜑 → ∃𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
8 | 1 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → 𝐴 ∈ ℤ) |
9 | 2 | ad2antrr 485 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → 𝐵 ∈ ℤ) |
10 | | simplrl 530 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → 𝑑 ∈ ℕ0) |
11 | | simprl 526 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
12 | | breq1 3992 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝑑 ↔ 𝑤 ∥ 𝑑)) |
13 | | breq1 3992 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝐴 ↔ 𝑤 ∥ 𝐴)) |
14 | | breq1 3992 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝐵 ↔ 𝑤 ∥ 𝐵)) |
15 | 13, 14 | anbi12d 470 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) |
16 | 12, 15 | bibi12d 234 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (𝑤 ∥ 𝑑 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵)))) |
17 | 16 | cbvralv 2696 |
. . . . . . 7
⊢
(∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ ∀𝑤 ∈ ℤ (𝑤 ∥ 𝑑 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) |
18 | 11, 17 | sylib 121 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → ∀𝑤 ∈ ℤ (𝑤 ∥ 𝑑 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) |
19 | | simplrr 531 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → 𝑒 ∈ ℕ0) |
20 | | simprr 527 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
21 | | breq1 3992 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝑒 ↔ 𝑤 ∥ 𝑒)) |
22 | 21, 15 | bibi12d 234 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (𝑤 ∥ 𝑒 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵)))) |
23 | 22 | cbvralv 2696 |
. . . . . . 7
⊢
(∀𝑧 ∈
ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ ∀𝑤 ∈ ℤ (𝑤 ∥ 𝑒 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) |
24 | 20, 23 | sylib 121 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → ∀𝑤 ∈ ℤ (𝑤 ∥ 𝑒 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) |
25 | 8, 9, 10, 18, 19, 24 | bezoutlemmo 11961 |
. . . . 5
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → 𝑑 = 𝑒) |
26 | 25 | ex 114 |
. . . 4
⊢ ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
→ ((∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → 𝑑 = 𝑒)) |
27 | 26 | ralrimivva 2552 |
. . 3
⊢ (𝜑 → ∀𝑑 ∈ ℕ0 ∀𝑒 ∈ ℕ0
((∀𝑧 ∈ ℤ
(𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → 𝑑 = 𝑒)) |
28 | | breq2 3993 |
. . . . . 6
⊢ (𝑑 = 𝑒 → (𝑧 ∥ 𝑑 ↔ 𝑧 ∥ 𝑒)) |
29 | 28 | bibi1d 232 |
. . . . 5
⊢ (𝑑 = 𝑒 → ((𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) |
30 | 29 | ralbidv 2470 |
. . . 4
⊢ (𝑑 = 𝑒 → (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) |
31 | 30 | rmo4 2923 |
. . 3
⊢
(∃*𝑑 ∈
ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ ∀𝑑 ∈ ℕ0 ∀𝑒 ∈ ℕ0
((∀𝑧 ∈ ℤ
(𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → 𝑑 = 𝑒)) |
32 | 27, 31 | sylibr 133 |
. 2
⊢ (𝜑 → ∃*𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
33 | | reu5 2682 |
. 2
⊢
(∃!𝑑 ∈
ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (∃𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃*𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) |
34 | 7, 32, 33 | sylanbrc 415 |
1
⊢ (𝜑 → ∃!𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |