| Step | Hyp | Ref
| Expression |
| 1 | | bezoutlemgcd.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 2 | | bezoutlemgcd.2 |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 3 | | bezoutlembi 12197 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
∃𝑑 ∈
ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) |
| 4 | | simpl 109 |
. . . . 5
⊢
((∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
| 5 | 4 | reximi 2594 |
. . . 4
⊢
(∃𝑑 ∈
ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → ∃𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
| 6 | 3, 5 | syl 14 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
∃𝑑 ∈
ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
| 7 | 1, 2, 6 | syl2anc 411 |
. 2
⊢ (𝜑 → ∃𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
| 8 | 1 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → 𝐴 ∈ ℤ) |
| 9 | 2 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → 𝐵 ∈ ℤ) |
| 10 | | simplrl 535 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → 𝑑 ∈ ℕ0) |
| 11 | | simprl 529 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
| 12 | | breq1 4037 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝑑 ↔ 𝑤 ∥ 𝑑)) |
| 13 | | breq1 4037 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝐴 ↔ 𝑤 ∥ 𝐴)) |
| 14 | | breq1 4037 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝐵 ↔ 𝑤 ∥ 𝐵)) |
| 15 | 13, 14 | anbi12d 473 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) |
| 16 | 12, 15 | bibi12d 235 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (𝑤 ∥ 𝑑 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵)))) |
| 17 | 16 | cbvralv 2729 |
. . . . . . 7
⊢
(∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ ∀𝑤 ∈ ℤ (𝑤 ∥ 𝑑 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) |
| 18 | 11, 17 | sylib 122 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → ∀𝑤 ∈ ℤ (𝑤 ∥ 𝑑 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) |
| 19 | | simplrr 536 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → 𝑒 ∈ ℕ0) |
| 20 | | simprr 531 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
| 21 | | breq1 4037 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝑒 ↔ 𝑤 ∥ 𝑒)) |
| 22 | 21, 15 | bibi12d 235 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (𝑤 ∥ 𝑒 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵)))) |
| 23 | 22 | cbvralv 2729 |
. . . . . . 7
⊢
(∀𝑧 ∈
ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ ∀𝑤 ∈ ℤ (𝑤 ∥ 𝑒 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) |
| 24 | 20, 23 | sylib 122 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → ∀𝑤 ∈ ℤ (𝑤 ∥ 𝑒 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) |
| 25 | 8, 9, 10, 18, 19, 24 | bezoutlemmo 12198 |
. . . . 5
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → 𝑑 = 𝑒) |
| 26 | 25 | ex 115 |
. . . 4
⊢ ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
→ ((∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → 𝑑 = 𝑒)) |
| 27 | 26 | ralrimivva 2579 |
. . 3
⊢ (𝜑 → ∀𝑑 ∈ ℕ0 ∀𝑒 ∈ ℕ0
((∀𝑧 ∈ ℤ
(𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → 𝑑 = 𝑒)) |
| 28 | | breq2 4038 |
. . . . . 6
⊢ (𝑑 = 𝑒 → (𝑧 ∥ 𝑑 ↔ 𝑧 ∥ 𝑒)) |
| 29 | 28 | bibi1d 233 |
. . . . 5
⊢ (𝑑 = 𝑒 → ((𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) |
| 30 | 29 | ralbidv 2497 |
. . . 4
⊢ (𝑑 = 𝑒 → (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) |
| 31 | 30 | rmo4 2957 |
. . 3
⊢
(∃*𝑑 ∈
ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ ∀𝑑 ∈ ℕ0 ∀𝑒 ∈ ℕ0
((∀𝑧 ∈ ℤ
(𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → 𝑑 = 𝑒)) |
| 32 | 27, 31 | sylibr 134 |
. 2
⊢ (𝜑 → ∃*𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |
| 33 | | reu5 2714 |
. 2
⊢
(∃!𝑑 ∈
ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (∃𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃*𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) |
| 34 | 7, 32, 33 | sylanbrc 417 |
1
⊢ (𝜑 → ∃!𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |