| Step | Hyp | Ref
 | Expression | 
| 1 |   | bezoutlemgcd.1 | 
. . 3
⊢ (𝜑 → 𝐴 ∈ ℤ) | 
| 2 |   | bezoutlemgcd.2 | 
. . 3
⊢ (𝜑 → 𝐵 ∈ ℤ) | 
| 3 |   | bezoutlembi 12172 | 
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
∃𝑑 ∈
ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡)))) | 
| 4 |   | simpl 109 | 
. . . . 5
⊢
((∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | 
| 5 | 4 | reximi 2594 | 
. . . 4
⊢
(∃𝑑 ∈
ℕ0 (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃𝑠 ∈ ℤ ∃𝑡 ∈ ℤ 𝑑 = ((𝐴 · 𝑠) + (𝐵 · 𝑡))) → ∃𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | 
| 6 | 3, 5 | syl 14 | 
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
∃𝑑 ∈
ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | 
| 7 | 1, 2, 6 | syl2anc 411 | 
. 2
⊢ (𝜑 → ∃𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | 
| 8 | 1 | ad2antrr 488 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → 𝐴 ∈ ℤ) | 
| 9 | 2 | ad2antrr 488 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → 𝐵 ∈ ℤ) | 
| 10 |   | simplrl 535 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → 𝑑 ∈ ℕ0) | 
| 11 |   | simprl 529 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | 
| 12 |   | breq1 4036 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝑑 ↔ 𝑤 ∥ 𝑑)) | 
| 13 |   | breq1 4036 | 
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝐴 ↔ 𝑤 ∥ 𝐴)) | 
| 14 |   | breq1 4036 | 
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝐵 ↔ 𝑤 ∥ 𝐵)) | 
| 15 | 13, 14 | anbi12d 473 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) | 
| 16 | 12, 15 | bibi12d 235 | 
. . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (𝑤 ∥ 𝑑 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵)))) | 
| 17 | 16 | cbvralv 2729 | 
. . . . . . 7
⊢
(∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ ∀𝑤 ∈ ℤ (𝑤 ∥ 𝑑 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) | 
| 18 | 11, 17 | sylib 122 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → ∀𝑤 ∈ ℤ (𝑤 ∥ 𝑑 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) | 
| 19 |   | simplrr 536 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → 𝑒 ∈ ℕ0) | 
| 20 |   | simprr 531 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | 
| 21 |   | breq1 4036 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝑒 ↔ 𝑤 ∥ 𝑒)) | 
| 22 | 21, 15 | bibi12d 235 | 
. . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (𝑤 ∥ 𝑒 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵)))) | 
| 23 | 22 | cbvralv 2729 | 
. . . . . . 7
⊢
(∀𝑧 ∈
ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ ∀𝑤 ∈ ℤ (𝑤 ∥ 𝑒 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) | 
| 24 | 20, 23 | sylib 122 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → ∀𝑤 ∈ ℤ (𝑤 ∥ 𝑒 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) | 
| 25 | 8, 9, 10, 18, 19, 24 | bezoutlemmo 12173 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
∧ (∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) → 𝑑 = 𝑒) | 
| 26 | 25 | ex 115 | 
. . . 4
⊢ ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ 𝑒 ∈ ℕ0))
→ ((∀𝑧 ∈
ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → 𝑑 = 𝑒)) | 
| 27 | 26 | ralrimivva 2579 | 
. . 3
⊢ (𝜑 → ∀𝑑 ∈ ℕ0 ∀𝑒 ∈ ℕ0
((∀𝑧 ∈ ℤ
(𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → 𝑑 = 𝑒)) | 
| 28 |   | breq2 4037 | 
. . . . . 6
⊢ (𝑑 = 𝑒 → (𝑧 ∥ 𝑑 ↔ 𝑧 ∥ 𝑒)) | 
| 29 | 28 | bibi1d 233 | 
. . . . 5
⊢ (𝑑 = 𝑒 → ((𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) | 
| 30 | 29 | ralbidv 2497 | 
. . . 4
⊢ (𝑑 = 𝑒 → (∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) | 
| 31 | 30 | rmo4 2957 | 
. . 3
⊢
(∃*𝑑 ∈
ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ ∀𝑑 ∈ ℕ0 ∀𝑒 ∈ ℕ0
((∀𝑧 ∈ ℤ
(𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑒 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) → 𝑑 = 𝑒)) | 
| 32 | 27, 31 | sylibr 134 | 
. 2
⊢ (𝜑 → ∃*𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | 
| 33 |   | reu5 2714 | 
. 2
⊢
(∃!𝑑 ∈
ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (∃𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ∧ ∃*𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) | 
| 34 | 7, 32, 33 | sylanbrc 417 | 
1
⊢ (𝜑 → ∃!𝑑 ∈ ℕ0 ∀𝑧 ∈ ℤ (𝑧 ∥ 𝑑 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) |