| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvoprab12 | GIF version | ||
| Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| cbvoprab12.1 | ⊢ Ⅎ𝑤𝜑 |
| cbvoprab12.2 | ⊢ Ⅎ𝑣𝜑 |
| cbvoprab12.3 | ⊢ Ⅎ𝑥𝜓 |
| cbvoprab12.4 | ⊢ Ⅎ𝑦𝜓 |
| cbvoprab12.5 | ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvoprab12 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑤, 𝑣〉, 𝑧〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . . . . 5 ⊢ Ⅎ𝑤 𝑢 = 〈𝑥, 𝑦〉 | |
| 2 | cbvoprab12.1 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
| 3 | 1, 2 | nfan 1589 | . . . 4 ⊢ Ⅎ𝑤(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 4 | nfv 1552 | . . . . 5 ⊢ Ⅎ𝑣 𝑢 = 〈𝑥, 𝑦〉 | |
| 5 | cbvoprab12.2 | . . . . 5 ⊢ Ⅎ𝑣𝜑 | |
| 6 | 4, 5 | nfan 1589 | . . . 4 ⊢ Ⅎ𝑣(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 7 | nfv 1552 | . . . . 5 ⊢ Ⅎ𝑥 𝑢 = 〈𝑤, 𝑣〉 | |
| 8 | cbvoprab12.3 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 9 | 7, 8 | nfan 1589 | . . . 4 ⊢ Ⅎ𝑥(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓) |
| 10 | nfv 1552 | . . . . 5 ⊢ Ⅎ𝑦 𝑢 = 〈𝑤, 𝑣〉 | |
| 11 | cbvoprab12.4 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
| 12 | 10, 11 | nfan 1589 | . . . 4 ⊢ Ⅎ𝑦(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓) |
| 13 | opeq12 3835 | . . . . . 6 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → 〈𝑥, 𝑦〉 = 〈𝑤, 𝑣〉) | |
| 14 | 13 | eqeq2d 2219 | . . . . 5 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → (𝑢 = 〈𝑥, 𝑦〉 ↔ 𝑢 = 〈𝑤, 𝑣〉)) |
| 15 | cbvoprab12.5 | . . . . 5 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → (𝜑 ↔ 𝜓)) | |
| 16 | 14, 15 | anbi12d 473 | . . . 4 ⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑣) → ((𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓))) |
| 17 | 3, 6, 9, 12, 16 | cbvex2 1947 | . . 3 ⊢ (∃𝑥∃𝑦(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑤∃𝑣(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓)) |
| 18 | 17 | opabbii 4127 | . 2 ⊢ {〈𝑢, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {〈𝑢, 𝑧〉 ∣ ∃𝑤∃𝑣(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓)} |
| 19 | dfoprab2 6015 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑢, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑢 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 20 | dfoprab2 6015 | . 2 ⊢ {〈〈𝑤, 𝑣〉, 𝑧〉 ∣ 𝜓} = {〈𝑢, 𝑧〉 ∣ ∃𝑤∃𝑣(𝑢 = 〈𝑤, 𝑣〉 ∧ 𝜓)} | |
| 21 | 18, 19, 20 | 3eqtr4i 2238 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑤, 𝑣〉, 𝑧〉 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 Ⅎwnf 1484 ∃wex 1516 〈cop 3646 {copab 4120 {coprab 5968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-opab 4122 df-oprab 5971 |
| This theorem is referenced by: cbvoprab12v 6043 cbvmpox 6046 dfoprab4f 6302 fmpox 6309 tposoprab 6389 |
| Copyright terms: Public domain | W3C validator |