| Step | Hyp | Ref
| Expression |
| 1 | | iseqf1olemjpcl.p |
. . . . 5
⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
| 2 | 1 | csbeq2i 3111 |
. . . 4
⊢
⦋𝑄 /
𝑓⦌𝑃 = ⦋𝑄 / 𝑓⦌(𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
| 3 | | iseqf1olemqf.q |
. . . . . 6
⊢ 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) |
| 4 | | iseqf1olemqf.k |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| 5 | | elfzel1 10099 |
. . . . . . . . 9
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
| 6 | 4, 5 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 7 | | elfzel2 10098 |
. . . . . . . . 9
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| 8 | 4, 7 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 9 | 6, 8 | fzfigd 10523 |
. . . . . . 7
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
| 10 | | mptexg 5787 |
. . . . . . 7
⊢ ((𝑀...𝑁) ∈ Fin → (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) ∈ V) |
| 11 | 9, 10 | syl 14 |
. . . . . 6
⊢ (𝜑 → (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(◡𝐽‘𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽‘𝑢))) ∈ V) |
| 12 | 3, 11 | eqeltrid 2283 |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ V) |
| 13 | | nfcvd 2340 |
. . . . . 6
⊢ (𝑄 ∈ V →
Ⅎ𝑓(𝑥 ∈
(ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) |
| 14 | | fveq1 5557 |
. . . . . . . . 9
⊢ (𝑓 = 𝑄 → (𝑓‘𝑥) = (𝑄‘𝑥)) |
| 15 | 14 | fveq2d 5562 |
. . . . . . . 8
⊢ (𝑓 = 𝑄 → (𝐺‘(𝑓‘𝑥)) = (𝐺‘(𝑄‘𝑥))) |
| 16 | 15 | ifeq1d 3578 |
. . . . . . 7
⊢ (𝑓 = 𝑄 → if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀)) = if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀))) |
| 17 | 16 | mpteq2dv 4124 |
. . . . . 6
⊢ (𝑓 = 𝑄 → (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) |
| 18 | 13, 17 | csbiegf 3128 |
. . . . 5
⊢ (𝑄 ∈ V →
⦋𝑄 / 𝑓⦌(𝑥 ∈
(ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) |
| 19 | 12, 18 | syl 14 |
. . . 4
⊢ (𝜑 → ⦋𝑄 / 𝑓⦌(𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) |
| 20 | 2, 19 | eqtrid 2241 |
. . 3
⊢ (𝜑 → ⦋𝑄 / 𝑓⦌𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)))) |
| 21 | | fveq2 5558 |
. . . . . 6
⊢ (𝑎 = (𝑄‘𝑥) → (𝐺‘𝑎) = (𝐺‘(𝑄‘𝑥))) |
| 22 | 21 | eleq1d 2265 |
. . . . 5
⊢ (𝑎 = (𝑄‘𝑥) → ((𝐺‘𝑎) ∈ 𝑆 ↔ (𝐺‘(𝑄‘𝑥)) ∈ 𝑆)) |
| 23 | | iseqf1olemjpcl.g |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 24 | 23 | ralrimiva 2570 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) |
| 25 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → (𝐺‘𝑥) = (𝐺‘𝑎)) |
| 26 | 25 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → ((𝐺‘𝑥) ∈ 𝑆 ↔ (𝐺‘𝑎) ∈ 𝑆)) |
| 27 | 26 | cbvralv 2729 |
. . . . . . 7
⊢
(∀𝑥 ∈
(ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) |
| 28 | 24, 27 | sylib 122 |
. . . . . 6
⊢ (𝜑 → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) |
| 29 | 28 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) |
| 30 | | iseqf1olemqf.j |
. . . . . . . . 9
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 31 | 4, 30, 3 | iseqf1olemqf 10596 |
. . . . . . . 8
⊢ (𝜑 → 𝑄:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 32 | 31 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑄:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 33 | | simpr 110 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑥 ≤ 𝑁) |
| 34 | | simplr 528 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑥 ∈ (ℤ≥‘𝑀)) |
| 35 | 8 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑁 ∈ ℤ) |
| 36 | | elfz5 10092 |
. . . . . . . . 9
⊢ ((𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ≤ 𝑁)) |
| 37 | 34, 35, 36 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ≤ 𝑁)) |
| 38 | 33, 37 | mpbird 167 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑥 ∈ (𝑀...𝑁)) |
| 39 | 32, 38 | ffvelcdmd 5698 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → (𝑄‘𝑥) ∈ (𝑀...𝑁)) |
| 40 | | elfzuz 10096 |
. . . . . 6
⊢ ((𝑄‘𝑥) ∈ (𝑀...𝑁) → (𝑄‘𝑥) ∈ (ℤ≥‘𝑀)) |
| 41 | 39, 40 | syl 14 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → (𝑄‘𝑥) ∈ (ℤ≥‘𝑀)) |
| 42 | 22, 29, 41 | rspcdva 2873 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → (𝐺‘(𝑄‘𝑥)) ∈ 𝑆) |
| 43 | | fveq2 5558 |
. . . . . 6
⊢ (𝑎 = 𝑀 → (𝐺‘𝑎) = (𝐺‘𝑀)) |
| 44 | 43 | eleq1d 2265 |
. . . . 5
⊢ (𝑎 = 𝑀 → ((𝐺‘𝑎) ∈ 𝑆 ↔ (𝐺‘𝑀) ∈ 𝑆)) |
| 45 | 28 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑥 ≤ 𝑁) → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) |
| 46 | 6 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑥 ≤ 𝑁) → 𝑀 ∈ ℤ) |
| 47 | | uzid 9615 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
| 48 | 46, 47 | syl 14 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑥 ≤ 𝑁) → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 49 | 44, 45, 48 | rspcdva 2873 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑥 ≤ 𝑁) → (𝐺‘𝑀) ∈ 𝑆) |
| 50 | | eluzelz 9610 |
. . . . 5
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → 𝑥 ∈ ℤ) |
| 51 | | zdcle 9402 |
. . . . 5
⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑥 ≤
𝑁) |
| 52 | 50, 8, 51 | syl2anr 290 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → DECID
𝑥 ≤ 𝑁) |
| 53 | 42, 49, 52 | ifcldadc 3590 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀)) ∈ 𝑆) |
| 54 | 20, 53 | fvmpt2d 5648 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝑄 / 𝑓⦌𝑃‘𝑥) = if(𝑥 ≤ 𝑁, (𝐺‘(𝑄‘𝑥)), (𝐺‘𝑀))) |
| 55 | 54, 53 | eqeltrd 2273 |
1
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝑄 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |