ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqpcl GIF version

Theorem iseqf1olemqpcl 10654
Description: Lemma for seq3f1o 10662. A closure lemma involving 𝑄 and 𝑃. (Contributed by Jim Kingdon, 29-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemjpcl.g ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1olemjpcl.p 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
iseqf1olemqpcl ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
Distinct variable groups:   𝑥,𝐺,𝑓   𝑥,𝐽,𝑓   𝑢,𝐽   𝑢,𝐾   𝑥,𝐾   𝑥,𝑀,𝑓   𝑢,𝑀   𝑓,𝑁,𝑥   𝑢,𝑁   𝑥,𝑄,𝑓   𝑥,𝑆   𝜑,𝑢   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝑃(𝑥,𝑢,𝑓)   𝑄(𝑢)   𝑆(𝑢,𝑓)   𝐺(𝑢)   𝐾(𝑓)

Proof of Theorem iseqf1olemqpcl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 iseqf1olemjpcl.p . . . . 5 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
21csbeq2i 3120 . . . 4 𝑄 / 𝑓𝑃 = 𝑄 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
3 iseqf1olemqf.q . . . . . 6 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
4 iseqf1olemqf.k . . . . . . . . 9 (𝜑𝐾 ∈ (𝑀...𝑁))
5 elfzel1 10146 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
64, 5syl 14 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
7 elfzel2 10145 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
84, 7syl 14 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
96, 8fzfigd 10576 . . . . . . 7 (𝜑 → (𝑀...𝑁) ∈ Fin)
10 mptexg 5809 . . . . . . 7 ((𝑀...𝑁) ∈ Fin → (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢))) ∈ V)
119, 10syl 14 . . . . . 6 (𝜑 → (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢))) ∈ V)
123, 11eqeltrid 2292 . . . . 5 (𝜑𝑄 ∈ V)
13 nfcvd 2349 . . . . . 6 (𝑄 ∈ V → 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
14 fveq1 5575 . . . . . . . . 9 (𝑓 = 𝑄 → (𝑓𝑥) = (𝑄𝑥))
1514fveq2d 5580 . . . . . . . 8 (𝑓 = 𝑄 → (𝐺‘(𝑓𝑥)) = (𝐺‘(𝑄𝑥)))
1615ifeq1d 3588 . . . . . . 7 (𝑓 = 𝑄 → if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀)))
1716mpteq2dv 4135 . . . . . 6 (𝑓 = 𝑄 → (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
1813, 17csbiegf 3137 . . . . 5 (𝑄 ∈ V → 𝑄 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
1912, 18syl 14 . . . 4 (𝜑𝑄 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
202, 19eqtrid 2250 . . 3 (𝜑𝑄 / 𝑓𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
21 fveq2 5576 . . . . . 6 (𝑎 = (𝑄𝑥) → (𝐺𝑎) = (𝐺‘(𝑄𝑥)))
2221eleq1d 2274 . . . . 5 (𝑎 = (𝑄𝑥) → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺‘(𝑄𝑥)) ∈ 𝑆))
23 iseqf1olemjpcl.g . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
2423ralrimiva 2579 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
25 fveq2 5576 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐺𝑥) = (𝐺𝑎))
2625eleq1d 2274 . . . . . . . 8 (𝑥 = 𝑎 → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺𝑎) ∈ 𝑆))
2726cbvralv 2738 . . . . . . 7 (∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
2824, 27sylib 122 . . . . . 6 (𝜑 → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
2928ad2antrr 488 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
30 iseqf1olemqf.j . . . . . . . . 9 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
314, 30, 3iseqf1olemqf 10649 . . . . . . . 8 (𝜑𝑄:(𝑀...𝑁)⟶(𝑀...𝑁))
3231ad2antrr 488 . . . . . . 7 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑄:(𝑀...𝑁)⟶(𝑀...𝑁))
33 simpr 110 . . . . . . . 8 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥𝑁)
34 simplr 528 . . . . . . . . 9 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (ℤ𝑀))
358ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑁 ∈ ℤ)
36 elfz5 10139 . . . . . . . . 9 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝑁))
3734, 35, 36syl2anc 411 . . . . . . . 8 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝑁))
3833, 37mpbird 167 . . . . . . 7 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (𝑀...𝑁))
3932, 38ffvelcdmd 5716 . . . . . 6 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑄𝑥) ∈ (𝑀...𝑁))
40 elfzuz 10143 . . . . . 6 ((𝑄𝑥) ∈ (𝑀...𝑁) → (𝑄𝑥) ∈ (ℤ𝑀))
4139, 40syl 14 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑄𝑥) ∈ (ℤ𝑀))
4222, 29, 41rspcdva 2882 . . . 4 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐺‘(𝑄𝑥)) ∈ 𝑆)
43 fveq2 5576 . . . . . 6 (𝑎 = 𝑀 → (𝐺𝑎) = (𝐺𝑀))
4443eleq1d 2274 . . . . 5 (𝑎 = 𝑀 → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺𝑀) ∈ 𝑆))
4528ad2antrr 488 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
466ad2antrr 488 . . . . . 6 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → 𝑀 ∈ ℤ)
47 uzid 9662 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
4846, 47syl 14 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → 𝑀 ∈ (ℤ𝑀))
4944, 45, 48rspcdva 2882 . . . 4 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → (𝐺𝑀) ∈ 𝑆)
50 eluzelz 9657 . . . . 5 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
51 zdcle 9449 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑥𝑁)
5250, 8, 51syl2anr 290 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → DECID 𝑥𝑁)
5342, 49, 52ifcldadc 3600 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀)) ∈ 𝑆)
5420, 53fvmpt2d 5666 . 2 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) = if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀)))
5554, 53eqeltrd 2282 1 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2176  wral 2484  Vcvv 2772  csb 3093  ifcif 3571   class class class wbr 4044  cmpt 4105  ccnv 4674  wf 5267  1-1-ontowf1o 5270  cfv 5271  (class class class)co 5944  Fincfn 6827  1c1 7926  cle 8108  cmin 8243  cz 9372  cuz 9648  ...cfz 10130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-er 6620  df-en 6828  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131
This theorem is referenced by:  seq3f1olemqsumkj  10656  seq3f1olemqsumk  10657  seq3f1olemqsum  10658
  Copyright terms: Public domain W3C validator