ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqpcl GIF version

Theorem iseqf1olemqpcl 10601
Description: Lemma for seq3f1o 10609. A closure lemma involving 𝑄 and 𝑃. (Contributed by Jim Kingdon, 29-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemjpcl.g ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1olemjpcl.p 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
iseqf1olemqpcl ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
Distinct variable groups:   𝑥,𝐺,𝑓   𝑥,𝐽,𝑓   𝑢,𝐽   𝑢,𝐾   𝑥,𝐾   𝑥,𝑀,𝑓   𝑢,𝑀   𝑓,𝑁,𝑥   𝑢,𝑁   𝑥,𝑄,𝑓   𝑥,𝑆   𝜑,𝑢   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝑃(𝑥,𝑢,𝑓)   𝑄(𝑢)   𝑆(𝑢,𝑓)   𝐺(𝑢)   𝐾(𝑓)

Proof of Theorem iseqf1olemqpcl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 iseqf1olemjpcl.p . . . . 5 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
21csbeq2i 3111 . . . 4 𝑄 / 𝑓𝑃 = 𝑄 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
3 iseqf1olemqf.q . . . . . 6 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
4 iseqf1olemqf.k . . . . . . . . 9 (𝜑𝐾 ∈ (𝑀...𝑁))
5 elfzel1 10099 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
64, 5syl 14 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
7 elfzel2 10098 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
84, 7syl 14 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
96, 8fzfigd 10523 . . . . . . 7 (𝜑 → (𝑀...𝑁) ∈ Fin)
10 mptexg 5787 . . . . . . 7 ((𝑀...𝑁) ∈ Fin → (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢))) ∈ V)
119, 10syl 14 . . . . . 6 (𝜑 → (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢))) ∈ V)
123, 11eqeltrid 2283 . . . . 5 (𝜑𝑄 ∈ V)
13 nfcvd 2340 . . . . . 6 (𝑄 ∈ V → 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
14 fveq1 5557 . . . . . . . . 9 (𝑓 = 𝑄 → (𝑓𝑥) = (𝑄𝑥))
1514fveq2d 5562 . . . . . . . 8 (𝑓 = 𝑄 → (𝐺‘(𝑓𝑥)) = (𝐺‘(𝑄𝑥)))
1615ifeq1d 3578 . . . . . . 7 (𝑓 = 𝑄 → if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀)))
1716mpteq2dv 4124 . . . . . 6 (𝑓 = 𝑄 → (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
1813, 17csbiegf 3128 . . . . 5 (𝑄 ∈ V → 𝑄 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
1912, 18syl 14 . . . 4 (𝜑𝑄 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
202, 19eqtrid 2241 . . 3 (𝜑𝑄 / 𝑓𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
21 fveq2 5558 . . . . . 6 (𝑎 = (𝑄𝑥) → (𝐺𝑎) = (𝐺‘(𝑄𝑥)))
2221eleq1d 2265 . . . . 5 (𝑎 = (𝑄𝑥) → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺‘(𝑄𝑥)) ∈ 𝑆))
23 iseqf1olemjpcl.g . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
2423ralrimiva 2570 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
25 fveq2 5558 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐺𝑥) = (𝐺𝑎))
2625eleq1d 2265 . . . . . . . 8 (𝑥 = 𝑎 → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺𝑎) ∈ 𝑆))
2726cbvralv 2729 . . . . . . 7 (∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
2824, 27sylib 122 . . . . . 6 (𝜑 → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
2928ad2antrr 488 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
30 iseqf1olemqf.j . . . . . . . . 9 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
314, 30, 3iseqf1olemqf 10596 . . . . . . . 8 (𝜑𝑄:(𝑀...𝑁)⟶(𝑀...𝑁))
3231ad2antrr 488 . . . . . . 7 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑄:(𝑀...𝑁)⟶(𝑀...𝑁))
33 simpr 110 . . . . . . . 8 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥𝑁)
34 simplr 528 . . . . . . . . 9 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (ℤ𝑀))
358ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑁 ∈ ℤ)
36 elfz5 10092 . . . . . . . . 9 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝑁))
3734, 35, 36syl2anc 411 . . . . . . . 8 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝑁))
3833, 37mpbird 167 . . . . . . 7 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (𝑀...𝑁))
3932, 38ffvelcdmd 5698 . . . . . 6 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑄𝑥) ∈ (𝑀...𝑁))
40 elfzuz 10096 . . . . . 6 ((𝑄𝑥) ∈ (𝑀...𝑁) → (𝑄𝑥) ∈ (ℤ𝑀))
4139, 40syl 14 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑄𝑥) ∈ (ℤ𝑀))
4222, 29, 41rspcdva 2873 . . . 4 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐺‘(𝑄𝑥)) ∈ 𝑆)
43 fveq2 5558 . . . . . 6 (𝑎 = 𝑀 → (𝐺𝑎) = (𝐺𝑀))
4443eleq1d 2265 . . . . 5 (𝑎 = 𝑀 → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺𝑀) ∈ 𝑆))
4528ad2antrr 488 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
466ad2antrr 488 . . . . . 6 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → 𝑀 ∈ ℤ)
47 uzid 9615 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
4846, 47syl 14 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → 𝑀 ∈ (ℤ𝑀))
4944, 45, 48rspcdva 2873 . . . 4 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → (𝐺𝑀) ∈ 𝑆)
50 eluzelz 9610 . . . . 5 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
51 zdcle 9402 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑥𝑁)
5250, 8, 51syl2anr 290 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → DECID 𝑥𝑁)
5342, 49, 52ifcldadc 3590 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀)) ∈ 𝑆)
5420, 53fvmpt2d 5648 . 2 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) = if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀)))
5554, 53eqeltrd 2273 1 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  csb 3084  ifcif 3561   class class class wbr 4033  cmpt 4094  ccnv 4662  wf 5254  1-1-ontowf1o 5257  cfv 5258  (class class class)co 5922  Fincfn 6799  1c1 7880  cle 8062  cmin 8197  cz 9326  cuz 9601  ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084
This theorem is referenced by:  seq3f1olemqsumkj  10603  seq3f1olemqsumk  10604  seq3f1olemqsum  10605
  Copyright terms: Public domain W3C validator