Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqpcl GIF version

Theorem iseqf1olemqpcl 10299
 Description: Lemma for seq3f1o 10307. A closure lemma involving 𝑄 and 𝑃. (Contributed by Jim Kingdon, 29-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemjpcl.g ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1olemjpcl.p 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
iseqf1olemqpcl ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
Distinct variable groups:   𝑥,𝐺,𝑓   𝑥,𝐽,𝑓   𝑢,𝐽   𝑢,𝐾   𝑥,𝐾   𝑥,𝑀,𝑓   𝑢,𝑀   𝑓,𝑁,𝑥   𝑢,𝑁   𝑥,𝑄,𝑓   𝑥,𝑆   𝜑,𝑢   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝑃(𝑥,𝑢,𝑓)   𝑄(𝑢)   𝑆(𝑢,𝑓)   𝐺(𝑢)   𝐾(𝑓)

Proof of Theorem iseqf1olemqpcl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 iseqf1olemjpcl.p . . . . 5 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
21csbeq2i 3033 . . . 4 𝑄 / 𝑓𝑃 = 𝑄 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
3 iseqf1olemqf.q . . . . . 6 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
4 iseqf1olemqf.k . . . . . . . . 9 (𝜑𝐾 ∈ (𝑀...𝑁))
5 elfzel1 9835 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
64, 5syl 14 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
7 elfzel2 9834 . . . . . . . . 9 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
84, 7syl 14 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
96, 8fzfigd 10234 . . . . . . 7 (𝜑 → (𝑀...𝑁) ∈ Fin)
10 mptexg 5652 . . . . . . 7 ((𝑀...𝑁) ∈ Fin → (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢))) ∈ V)
119, 10syl 14 . . . . . 6 (𝜑 → (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢))) ∈ V)
123, 11eqeltrid 2227 . . . . 5 (𝜑𝑄 ∈ V)
13 nfcvd 2283 . . . . . 6 (𝑄 ∈ V → 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
14 fveq1 5427 . . . . . . . . 9 (𝑓 = 𝑄 → (𝑓𝑥) = (𝑄𝑥))
1514fveq2d 5432 . . . . . . . 8 (𝑓 = 𝑄 → (𝐺‘(𝑓𝑥)) = (𝐺‘(𝑄𝑥)))
1615ifeq1d 3493 . . . . . . 7 (𝑓 = 𝑄 → if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀)))
1716mpteq2dv 4026 . . . . . 6 (𝑓 = 𝑄 → (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
1813, 17csbiegf 3047 . . . . 5 (𝑄 ∈ V → 𝑄 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
1912, 18syl 14 . . . 4 (𝜑𝑄 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
202, 19syl5eq 2185 . . 3 (𝜑𝑄 / 𝑓𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀))))
21 fveq2 5428 . . . . . 6 (𝑎 = (𝑄𝑥) → (𝐺𝑎) = (𝐺‘(𝑄𝑥)))
2221eleq1d 2209 . . . . 5 (𝑎 = (𝑄𝑥) → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺‘(𝑄𝑥)) ∈ 𝑆))
23 iseqf1olemjpcl.g . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
2423ralrimiva 2508 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
25 fveq2 5428 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐺𝑥) = (𝐺𝑎))
2625eleq1d 2209 . . . . . . . 8 (𝑥 = 𝑎 → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺𝑎) ∈ 𝑆))
2726cbvralv 2657 . . . . . . 7 (∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
2824, 27sylib 121 . . . . . 6 (𝜑 → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
2928ad2antrr 480 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
30 iseqf1olemqf.j . . . . . . . . 9 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
314, 30, 3iseqf1olemqf 10294 . . . . . . . 8 (𝜑𝑄:(𝑀...𝑁)⟶(𝑀...𝑁))
3231ad2antrr 480 . . . . . . 7 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑄:(𝑀...𝑁)⟶(𝑀...𝑁))
33 simpr 109 . . . . . . . 8 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥𝑁)
34 simplr 520 . . . . . . . . 9 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (ℤ𝑀))
358ad2antrr 480 . . . . . . . . 9 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑁 ∈ ℤ)
36 elfz5 9828 . . . . . . . . 9 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝑁))
3734, 35, 36syl2anc 409 . . . . . . . 8 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝑁))
3833, 37mpbird 166 . . . . . . 7 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (𝑀...𝑁))
3932, 38ffvelrnd 5563 . . . . . 6 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑄𝑥) ∈ (𝑀...𝑁))
40 elfzuz 9832 . . . . . 6 ((𝑄𝑥) ∈ (𝑀...𝑁) → (𝑄𝑥) ∈ (ℤ𝑀))
4139, 40syl 14 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑄𝑥) ∈ (ℤ𝑀))
4222, 29, 41rspcdva 2797 . . . 4 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐺‘(𝑄𝑥)) ∈ 𝑆)
43 fveq2 5428 . . . . . 6 (𝑎 = 𝑀 → (𝐺𝑎) = (𝐺𝑀))
4443eleq1d 2209 . . . . 5 (𝑎 = 𝑀 → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺𝑀) ∈ 𝑆))
4528ad2antrr 480 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
466ad2antrr 480 . . . . . 6 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → 𝑀 ∈ ℤ)
47 uzid 9363 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
4846, 47syl 14 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → 𝑀 ∈ (ℤ𝑀))
4944, 45, 48rspcdva 2797 . . . 4 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → (𝐺𝑀) ∈ 𝑆)
50 eluzelz 9358 . . . . 5 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
51 zdcle 9150 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑥𝑁)
5250, 8, 51syl2anr 288 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → DECID 𝑥𝑁)
5342, 49, 52ifcldadc 3505 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀)) ∈ 𝑆)
5420, 53fvmpt2d 5514 . 2 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) = if(𝑥𝑁, (𝐺‘(𝑄𝑥)), (𝐺𝑀)))
5554, 53eqeltrd 2217 1 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝑄 / 𝑓𝑃𝑥) ∈ 𝑆)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104  DECID wdc 820   = wceq 1332   ∈ wcel 1481  ∀wral 2417  Vcvv 2689  ⦋csb 3006  ifcif 3478   class class class wbr 3936   ↦ cmpt 3996  ◡ccnv 4545  ⟶wf 5126  –1-1-onto→wf1o 5129  ‘cfv 5130  (class class class)co 5781  Fincfn 6641  1c1 7644   ≤ cle 7824   − cmin 7956  ℤcz 9077  ℤ≥cuz 9349  ...cfz 9820 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-addcom 7743  ax-addass 7745  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-0id 7751  ax-rnegex 7752  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-1o 6320  df-er 6436  df-en 6642  df-fin 6644  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-inn 8744  df-n0 9001  df-z 9078  df-uz 9350  df-fz 9821 This theorem is referenced by:  seq3f1olemqsumkj  10301  seq3f1olemqsumk  10302  seq3f1olemqsum  10303
 Copyright terms: Public domain W3C validator