Proof of Theorem iseqf1olemfvp
Step | Hyp | Ref
| Expression |
1 | | iseqf1olemfvp.p |
. . . . 5
⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
2 | 1 | csbeq2i 3072 |
. . . 4
⊢
⦋𝑇 /
𝑓⦌𝑃 = ⦋𝑇 / 𝑓⦌(𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
3 | | iseqf1olemfvp.t |
. . . . . . 7
⊢ (𝜑 → 𝑇:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
4 | | f1of 5432 |
. . . . . . 7
⊢ (𝑇:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝑇:(𝑀...𝑁)⟶(𝑀...𝑁)) |
5 | 3, 4 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑇:(𝑀...𝑁)⟶(𝑀...𝑁)) |
6 | | iseqf1olemfvp.k |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
7 | | elfzel1 9959 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
8 | 6, 7 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
9 | | elfzel2 9958 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
10 | 6, 9 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) |
11 | 8, 10 | fzfigd 10366 |
. . . . . 6
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
12 | | fex 5714 |
. . . . . 6
⊢ ((𝑇:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → 𝑇 ∈ V) |
13 | 5, 11, 12 | syl2anc 409 |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ V) |
14 | | nfcvd 2309 |
. . . . . 6
⊢ (𝑇 ∈ V →
Ⅎ𝑓(𝑥 ∈
(ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑇‘𝑥)), (𝐺‘𝑀)))) |
15 | | fveq1 5485 |
. . . . . . . . 9
⊢ (𝑓 = 𝑇 → (𝑓‘𝑥) = (𝑇‘𝑥)) |
16 | 15 | fveq2d 5490 |
. . . . . . . 8
⊢ (𝑓 = 𝑇 → (𝐺‘(𝑓‘𝑥)) = (𝐺‘(𝑇‘𝑥))) |
17 | 16 | ifeq1d 3537 |
. . . . . . 7
⊢ (𝑓 = 𝑇 → if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀)) = if(𝑥 ≤ 𝑁, (𝐺‘(𝑇‘𝑥)), (𝐺‘𝑀))) |
18 | 17 | mpteq2dv 4073 |
. . . . . 6
⊢ (𝑓 = 𝑇 → (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑇‘𝑥)), (𝐺‘𝑀)))) |
19 | 14, 18 | csbiegf 3088 |
. . . . 5
⊢ (𝑇 ∈ V →
⦋𝑇 / 𝑓⦌(𝑥 ∈
(ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑇‘𝑥)), (𝐺‘𝑀)))) |
20 | 13, 19 | syl 14 |
. . . 4
⊢ (𝜑 → ⦋𝑇 / 𝑓⦌(𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑇‘𝑥)), (𝐺‘𝑀)))) |
21 | 2, 20 | syl5eq 2211 |
. . 3
⊢ (𝜑 → ⦋𝑇 / 𝑓⦌𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑇‘𝑥)), (𝐺‘𝑀)))) |
22 | | simpr 109 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) |
23 | 22 | breq1d 3992 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑥 ≤ 𝑁 ↔ 𝐴 ≤ 𝑁)) |
24 | 22 | fveq2d 5490 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑇‘𝑥) = (𝑇‘𝐴)) |
25 | 24 | fveq2d 5490 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐺‘(𝑇‘𝑥)) = (𝐺‘(𝑇‘𝐴))) |
26 | 23, 25 | ifbieq1d 3542 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → if(𝑥 ≤ 𝑁, (𝐺‘(𝑇‘𝑥)), (𝐺‘𝑀)) = if(𝐴 ≤ 𝑁, (𝐺‘(𝑇‘𝐴)), (𝐺‘𝑀))) |
27 | | iseqf1olemfvp.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) |
28 | | elfzuz 9956 |
. . . 4
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ (ℤ≥‘𝑀)) |
29 | 27, 28 | syl 14 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘𝑀)) |
30 | | elfzle2 9963 |
. . . . . 6
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ≤ 𝑁) |
31 | 27, 30 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝐴 ≤ 𝑁) |
32 | 31 | iftrued 3527 |
. . . 4
⊢ (𝜑 → if(𝐴 ≤ 𝑁, (𝐺‘(𝑇‘𝐴)), (𝐺‘𝑀)) = (𝐺‘(𝑇‘𝐴))) |
33 | | fveq2 5486 |
. . . . . 6
⊢ (𝑥 = (𝑇‘𝐴) → (𝐺‘𝑥) = (𝐺‘(𝑇‘𝐴))) |
34 | 33 | eleq1d 2235 |
. . . . 5
⊢ (𝑥 = (𝑇‘𝐴) → ((𝐺‘𝑥) ∈ 𝑆 ↔ (𝐺‘(𝑇‘𝐴)) ∈ 𝑆)) |
35 | | iseqf1olemfvp.g |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
36 | 35 | ralrimiva 2539 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) |
37 | 5, 27 | ffvelrnd 5621 |
. . . . . 6
⊢ (𝜑 → (𝑇‘𝐴) ∈ (𝑀...𝑁)) |
38 | | elfzuz 9956 |
. . . . . 6
⊢ ((𝑇‘𝐴) ∈ (𝑀...𝑁) → (𝑇‘𝐴) ∈ (ℤ≥‘𝑀)) |
39 | 37, 38 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝑇‘𝐴) ∈ (ℤ≥‘𝑀)) |
40 | 34, 36, 39 | rspcdva 2835 |
. . . 4
⊢ (𝜑 → (𝐺‘(𝑇‘𝐴)) ∈ 𝑆) |
41 | 32, 40 | eqeltrd 2243 |
. . 3
⊢ (𝜑 → if(𝐴 ≤ 𝑁, (𝐺‘(𝑇‘𝐴)), (𝐺‘𝑀)) ∈ 𝑆) |
42 | 21, 26, 29, 41 | fvmptd 5567 |
. 2
⊢ (𝜑 → (⦋𝑇 / 𝑓⦌𝑃‘𝐴) = if(𝐴 ≤ 𝑁, (𝐺‘(𝑇‘𝐴)), (𝐺‘𝑀))) |
43 | 42, 32 | eqtrd 2198 |
1
⊢ (𝜑 → (⦋𝑇 / 𝑓⦌𝑃‘𝐴) = (𝐺‘(𝑇‘𝐴))) |