ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemfvp GIF version

Theorem iseqf1olemfvp 10432
Description: Lemma for seq3f1o 10439. (Contributed by Jim Kingdon, 30-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemfvp.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemfvp.t (𝜑𝑇:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemfvp.a (𝜑𝐴 ∈ (𝑀...𝑁))
iseqf1olemfvp.g ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1olemfvp.p 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
iseqf1olemfvp (𝜑 → (𝑇 / 𝑓𝑃𝐴) = (𝐺‘(𝑇𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑓,𝐺,𝑥   𝑥,𝐾   𝑓,𝑀,𝑥   𝑓,𝑁,𝑥   𝑥,𝑆   𝑇,𝑓,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝑃(𝑥,𝑓)   𝑆(𝑓)   𝐾(𝑓)

Proof of Theorem iseqf1olemfvp
StepHypRef Expression
1 iseqf1olemfvp.p . . . . 5 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
21csbeq2i 3072 . . . 4 𝑇 / 𝑓𝑃 = 𝑇 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
3 iseqf1olemfvp.t . . . . . . 7 (𝜑𝑇:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
4 f1of 5432 . . . . . . 7 (𝑇:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝑇:(𝑀...𝑁)⟶(𝑀...𝑁))
53, 4syl 14 . . . . . 6 (𝜑𝑇:(𝑀...𝑁)⟶(𝑀...𝑁))
6 iseqf1olemfvp.k . . . . . . . 8 (𝜑𝐾 ∈ (𝑀...𝑁))
7 elfzel1 9959 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
86, 7syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
9 elfzel2 9958 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
106, 9syl 14 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
118, 10fzfigd 10366 . . . . . 6 (𝜑 → (𝑀...𝑁) ∈ Fin)
12 fex 5714 . . . . . 6 ((𝑇:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → 𝑇 ∈ V)
135, 11, 12syl2anc 409 . . . . 5 (𝜑𝑇 ∈ V)
14 nfcvd 2309 . . . . . 6 (𝑇 ∈ V → 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑇𝑥)), (𝐺𝑀))))
15 fveq1 5485 . . . . . . . . 9 (𝑓 = 𝑇 → (𝑓𝑥) = (𝑇𝑥))
1615fveq2d 5490 . . . . . . . 8 (𝑓 = 𝑇 → (𝐺‘(𝑓𝑥)) = (𝐺‘(𝑇𝑥)))
1716ifeq1d 3537 . . . . . . 7 (𝑓 = 𝑇 → if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝑇𝑥)), (𝐺𝑀)))
1817mpteq2dv 4073 . . . . . 6 (𝑓 = 𝑇 → (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑇𝑥)), (𝐺𝑀))))
1914, 18csbiegf 3088 . . . . 5 (𝑇 ∈ V → 𝑇 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑇𝑥)), (𝐺𝑀))))
2013, 19syl 14 . . . 4 (𝜑𝑇 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑇𝑥)), (𝐺𝑀))))
212, 20syl5eq 2211 . . 3 (𝜑𝑇 / 𝑓𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑇𝑥)), (𝐺𝑀))))
22 simpr 109 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
2322breq1d 3992 . . . 4 ((𝜑𝑥 = 𝐴) → (𝑥𝑁𝐴𝑁))
2422fveq2d 5490 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝑇𝑥) = (𝑇𝐴))
2524fveq2d 5490 . . . 4 ((𝜑𝑥 = 𝐴) → (𝐺‘(𝑇𝑥)) = (𝐺‘(𝑇𝐴)))
2623, 25ifbieq1d 3542 . . 3 ((𝜑𝑥 = 𝐴) → if(𝑥𝑁, (𝐺‘(𝑇𝑥)), (𝐺𝑀)) = if(𝐴𝑁, (𝐺‘(𝑇𝐴)), (𝐺𝑀)))
27 iseqf1olemfvp.a . . . 4 (𝜑𝐴 ∈ (𝑀...𝑁))
28 elfzuz 9956 . . . 4 (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ (ℤ𝑀))
2927, 28syl 14 . . 3 (𝜑𝐴 ∈ (ℤ𝑀))
30 elfzle2 9963 . . . . . 6 (𝐴 ∈ (𝑀...𝑁) → 𝐴𝑁)
3127, 30syl 14 . . . . 5 (𝜑𝐴𝑁)
3231iftrued 3527 . . . 4 (𝜑 → if(𝐴𝑁, (𝐺‘(𝑇𝐴)), (𝐺𝑀)) = (𝐺‘(𝑇𝐴)))
33 fveq2 5486 . . . . . 6 (𝑥 = (𝑇𝐴) → (𝐺𝑥) = (𝐺‘(𝑇𝐴)))
3433eleq1d 2235 . . . . 5 (𝑥 = (𝑇𝐴) → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺‘(𝑇𝐴)) ∈ 𝑆))
35 iseqf1olemfvp.g . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
3635ralrimiva 2539 . . . . 5 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
375, 27ffvelrnd 5621 . . . . . 6 (𝜑 → (𝑇𝐴) ∈ (𝑀...𝑁))
38 elfzuz 9956 . . . . . 6 ((𝑇𝐴) ∈ (𝑀...𝑁) → (𝑇𝐴) ∈ (ℤ𝑀))
3937, 38syl 14 . . . . 5 (𝜑 → (𝑇𝐴) ∈ (ℤ𝑀))
4034, 36, 39rspcdva 2835 . . . 4 (𝜑 → (𝐺‘(𝑇𝐴)) ∈ 𝑆)
4132, 40eqeltrd 2243 . . 3 (𝜑 → if(𝐴𝑁, (𝐺‘(𝑇𝐴)), (𝐺𝑀)) ∈ 𝑆)
4221, 26, 29, 41fvmptd 5567 . 2 (𝜑 → (𝑇 / 𝑓𝑃𝐴) = if(𝐴𝑁, (𝐺‘(𝑇𝐴)), (𝐺𝑀)))
4342, 32eqtrd 2198 1 (𝜑 → (𝑇 / 𝑓𝑃𝐴) = (𝐺‘(𝑇𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  csb 3045  ifcif 3520   class class class wbr 3982  cmpt 4043  wf 5184  1-1-ontowf1o 5187  cfv 5188  (class class class)co 5842  Fincfn 6706  cle 7934  cz 9191  cuz 9466  ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-er 6501  df-en 6707  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by:  seq3f1olemqsumkj  10433  seq3f1olemqsumk  10434
  Copyright terms: Public domain W3C validator