ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemfvp GIF version

Theorem iseqf1olemfvp 10453
Description: Lemma for seq3f1o 10460. (Contributed by Jim Kingdon, 30-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemfvp.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemfvp.t (𝜑𝑇:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemfvp.a (𝜑𝐴 ∈ (𝑀...𝑁))
iseqf1olemfvp.g ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1olemfvp.p 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
iseqf1olemfvp (𝜑 → (𝑇 / 𝑓𝑃𝐴) = (𝐺‘(𝑇𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑓,𝐺,𝑥   𝑥,𝐾   𝑓,𝑀,𝑥   𝑓,𝑁,𝑥   𝑥,𝑆   𝑇,𝑓,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝑃(𝑥,𝑓)   𝑆(𝑓)   𝐾(𝑓)

Proof of Theorem iseqf1olemfvp
StepHypRef Expression
1 iseqf1olemfvp.p . . . . 5 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
21csbeq2i 3076 . . . 4 𝑇 / 𝑓𝑃 = 𝑇 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
3 iseqf1olemfvp.t . . . . . . 7 (𝜑𝑇:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
4 f1of 5442 . . . . . . 7 (𝑇:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝑇:(𝑀...𝑁)⟶(𝑀...𝑁))
53, 4syl 14 . . . . . 6 (𝜑𝑇:(𝑀...𝑁)⟶(𝑀...𝑁))
6 iseqf1olemfvp.k . . . . . . . 8 (𝜑𝐾 ∈ (𝑀...𝑁))
7 elfzel1 9980 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
86, 7syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
9 elfzel2 9979 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
106, 9syl 14 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
118, 10fzfigd 10387 . . . . . 6 (𝜑 → (𝑀...𝑁) ∈ Fin)
12 fex 5725 . . . . . 6 ((𝑇:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → 𝑇 ∈ V)
135, 11, 12syl2anc 409 . . . . 5 (𝜑𝑇 ∈ V)
14 nfcvd 2313 . . . . . 6 (𝑇 ∈ V → 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑇𝑥)), (𝐺𝑀))))
15 fveq1 5495 . . . . . . . . 9 (𝑓 = 𝑇 → (𝑓𝑥) = (𝑇𝑥))
1615fveq2d 5500 . . . . . . . 8 (𝑓 = 𝑇 → (𝐺‘(𝑓𝑥)) = (𝐺‘(𝑇𝑥)))
1716ifeq1d 3543 . . . . . . 7 (𝑓 = 𝑇 → if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝑇𝑥)), (𝐺𝑀)))
1817mpteq2dv 4080 . . . . . 6 (𝑓 = 𝑇 → (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑇𝑥)), (𝐺𝑀))))
1914, 18csbiegf 3092 . . . . 5 (𝑇 ∈ V → 𝑇 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑇𝑥)), (𝐺𝑀))))
2013, 19syl 14 . . . 4 (𝜑𝑇 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑇𝑥)), (𝐺𝑀))))
212, 20eqtrid 2215 . . 3 (𝜑𝑇 / 𝑓𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑇𝑥)), (𝐺𝑀))))
22 simpr 109 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
2322breq1d 3999 . . . 4 ((𝜑𝑥 = 𝐴) → (𝑥𝑁𝐴𝑁))
2422fveq2d 5500 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝑇𝑥) = (𝑇𝐴))
2524fveq2d 5500 . . . 4 ((𝜑𝑥 = 𝐴) → (𝐺‘(𝑇𝑥)) = (𝐺‘(𝑇𝐴)))
2623, 25ifbieq1d 3548 . . 3 ((𝜑𝑥 = 𝐴) → if(𝑥𝑁, (𝐺‘(𝑇𝑥)), (𝐺𝑀)) = if(𝐴𝑁, (𝐺‘(𝑇𝐴)), (𝐺𝑀)))
27 iseqf1olemfvp.a . . . 4 (𝜑𝐴 ∈ (𝑀...𝑁))
28 elfzuz 9977 . . . 4 (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ (ℤ𝑀))
2927, 28syl 14 . . 3 (𝜑𝐴 ∈ (ℤ𝑀))
30 elfzle2 9984 . . . . . 6 (𝐴 ∈ (𝑀...𝑁) → 𝐴𝑁)
3127, 30syl 14 . . . . 5 (𝜑𝐴𝑁)
3231iftrued 3533 . . . 4 (𝜑 → if(𝐴𝑁, (𝐺‘(𝑇𝐴)), (𝐺𝑀)) = (𝐺‘(𝑇𝐴)))
33 fveq2 5496 . . . . . 6 (𝑥 = (𝑇𝐴) → (𝐺𝑥) = (𝐺‘(𝑇𝐴)))
3433eleq1d 2239 . . . . 5 (𝑥 = (𝑇𝐴) → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺‘(𝑇𝐴)) ∈ 𝑆))
35 iseqf1olemfvp.g . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
3635ralrimiva 2543 . . . . 5 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
375, 27ffvelrnd 5632 . . . . . 6 (𝜑 → (𝑇𝐴) ∈ (𝑀...𝑁))
38 elfzuz 9977 . . . . . 6 ((𝑇𝐴) ∈ (𝑀...𝑁) → (𝑇𝐴) ∈ (ℤ𝑀))
3937, 38syl 14 . . . . 5 (𝜑 → (𝑇𝐴) ∈ (ℤ𝑀))
4034, 36, 39rspcdva 2839 . . . 4 (𝜑 → (𝐺‘(𝑇𝐴)) ∈ 𝑆)
4132, 40eqeltrd 2247 . . 3 (𝜑 → if(𝐴𝑁, (𝐺‘(𝑇𝐴)), (𝐺𝑀)) ∈ 𝑆)
4221, 26, 29, 41fvmptd 5577 . 2 (𝜑 → (𝑇 / 𝑓𝑃𝐴) = if(𝐴𝑁, (𝐺‘(𝑇𝐴)), (𝐺𝑀)))
4342, 32eqtrd 2203 1 (𝜑 → (𝑇 / 𝑓𝑃𝐴) = (𝐺‘(𝑇𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  csb 3049  ifcif 3526   class class class wbr 3989  cmpt 4050  wf 5194  1-1-ontowf1o 5197  cfv 5198  (class class class)co 5853  Fincfn 6718  cle 7955  cz 9212  cuz 9487  ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-er 6513  df-en 6719  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966
This theorem is referenced by:  seq3f1olemqsumkj  10454  seq3f1olemqsumk  10455
  Copyright terms: Public domain W3C validator