Proof of Theorem iseqf1olemfvp
| Step | Hyp | Ref
| Expression |
| 1 | | iseqf1olemfvp.p |
. . . . 5
⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
| 2 | 1 | csbeq2i 3111 |
. . . 4
⊢
⦋𝑇 /
𝑓⦌𝑃 = ⦋𝑇 / 𝑓⦌(𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
| 3 | | iseqf1olemfvp.t |
. . . . . . 7
⊢ (𝜑 → 𝑇:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
| 4 | | f1of 5504 |
. . . . . . 7
⊢ (𝑇:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝑇:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 5 | 3, 4 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑇:(𝑀...𝑁)⟶(𝑀...𝑁)) |
| 6 | | iseqf1olemfvp.k |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
| 7 | | elfzel1 10099 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
| 8 | 6, 7 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 9 | | elfzel2 10098 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| 10 | 6, 9 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 11 | 8, 10 | fzfigd 10523 |
. . . . . 6
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
| 12 | | fex 5791 |
. . . . . 6
⊢ ((𝑇:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → 𝑇 ∈ V) |
| 13 | 5, 11, 12 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ V) |
| 14 | | nfcvd 2340 |
. . . . . 6
⊢ (𝑇 ∈ V →
Ⅎ𝑓(𝑥 ∈
(ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑇‘𝑥)), (𝐺‘𝑀)))) |
| 15 | | fveq1 5557 |
. . . . . . . . 9
⊢ (𝑓 = 𝑇 → (𝑓‘𝑥) = (𝑇‘𝑥)) |
| 16 | 15 | fveq2d 5562 |
. . . . . . . 8
⊢ (𝑓 = 𝑇 → (𝐺‘(𝑓‘𝑥)) = (𝐺‘(𝑇‘𝑥))) |
| 17 | 16 | ifeq1d 3578 |
. . . . . . 7
⊢ (𝑓 = 𝑇 → if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀)) = if(𝑥 ≤ 𝑁, (𝐺‘(𝑇‘𝑥)), (𝐺‘𝑀))) |
| 18 | 17 | mpteq2dv 4124 |
. . . . . 6
⊢ (𝑓 = 𝑇 → (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑇‘𝑥)), (𝐺‘𝑀)))) |
| 19 | 14, 18 | csbiegf 3128 |
. . . . 5
⊢ (𝑇 ∈ V →
⦋𝑇 / 𝑓⦌(𝑥 ∈
(ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑇‘𝑥)), (𝐺‘𝑀)))) |
| 20 | 13, 19 | syl 14 |
. . . 4
⊢ (𝜑 → ⦋𝑇 / 𝑓⦌(𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑇‘𝑥)), (𝐺‘𝑀)))) |
| 21 | 2, 20 | eqtrid 2241 |
. . 3
⊢ (𝜑 → ⦋𝑇 / 𝑓⦌𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑇‘𝑥)), (𝐺‘𝑀)))) |
| 22 | | simpr 110 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) |
| 23 | 22 | breq1d 4043 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑥 ≤ 𝑁 ↔ 𝐴 ≤ 𝑁)) |
| 24 | 22 | fveq2d 5562 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑇‘𝑥) = (𝑇‘𝐴)) |
| 25 | 24 | fveq2d 5562 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐺‘(𝑇‘𝑥)) = (𝐺‘(𝑇‘𝐴))) |
| 26 | 23, 25 | ifbieq1d 3583 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → if(𝑥 ≤ 𝑁, (𝐺‘(𝑇‘𝑥)), (𝐺‘𝑀)) = if(𝐴 ≤ 𝑁, (𝐺‘(𝑇‘𝐴)), (𝐺‘𝑀))) |
| 27 | | iseqf1olemfvp.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ (𝑀...𝑁)) |
| 28 | | elfzuz 10096 |
. . . 4
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ∈ (ℤ≥‘𝑀)) |
| 29 | 27, 28 | syl 14 |
. . 3
⊢ (𝜑 → 𝐴 ∈ (ℤ≥‘𝑀)) |
| 30 | | elfzle2 10103 |
. . . . . 6
⊢ (𝐴 ∈ (𝑀...𝑁) → 𝐴 ≤ 𝑁) |
| 31 | 27, 30 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝐴 ≤ 𝑁) |
| 32 | 31 | iftrued 3568 |
. . . 4
⊢ (𝜑 → if(𝐴 ≤ 𝑁, (𝐺‘(𝑇‘𝐴)), (𝐺‘𝑀)) = (𝐺‘(𝑇‘𝐴))) |
| 33 | | fveq2 5558 |
. . . . . 6
⊢ (𝑥 = (𝑇‘𝐴) → (𝐺‘𝑥) = (𝐺‘(𝑇‘𝐴))) |
| 34 | 33 | eleq1d 2265 |
. . . . 5
⊢ (𝑥 = (𝑇‘𝐴) → ((𝐺‘𝑥) ∈ 𝑆 ↔ (𝐺‘(𝑇‘𝐴)) ∈ 𝑆)) |
| 35 | | iseqf1olemfvp.g |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 36 | 35 | ralrimiva 2570 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) |
| 37 | 5, 27 | ffvelcdmd 5698 |
. . . . . 6
⊢ (𝜑 → (𝑇‘𝐴) ∈ (𝑀...𝑁)) |
| 38 | | elfzuz 10096 |
. . . . . 6
⊢ ((𝑇‘𝐴) ∈ (𝑀...𝑁) → (𝑇‘𝐴) ∈ (ℤ≥‘𝑀)) |
| 39 | 37, 38 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝑇‘𝐴) ∈ (ℤ≥‘𝑀)) |
| 40 | 34, 36, 39 | rspcdva 2873 |
. . . 4
⊢ (𝜑 → (𝐺‘(𝑇‘𝐴)) ∈ 𝑆) |
| 41 | 32, 40 | eqeltrd 2273 |
. . 3
⊢ (𝜑 → if(𝐴 ≤ 𝑁, (𝐺‘(𝑇‘𝐴)), (𝐺‘𝑀)) ∈ 𝑆) |
| 42 | 21, 26, 29, 41 | fvmptd 5642 |
. 2
⊢ (𝜑 → (⦋𝑇 / 𝑓⦌𝑃‘𝐴) = if(𝐴 ≤ 𝑁, (𝐺‘(𝑇‘𝐴)), (𝐺‘𝑀))) |
| 43 | 42, 32 | eqtrd 2229 |
1
⊢ (𝜑 → (⦋𝑇 / 𝑓⦌𝑃‘𝐴) = (𝐺‘(𝑇‘𝐴))) |