ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemjpcl GIF version

Theorem iseqf1olemjpcl 10730
Description: Lemma for seq3f1o 10739. A closure lemma involving 𝐽 and 𝑃. (Contributed by Jim Kingdon, 29-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemjpcl.g ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1olemjpcl.p 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
iseqf1olemjpcl ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
Distinct variable groups:   𝑥,𝐺,𝑓   𝑥,𝐽,𝑓   𝑢,𝐽   𝑢,𝐾   𝑥,𝐾   𝑥,𝑀,𝑓   𝑢,𝑀   𝑓,𝑁,𝑥   𝑢,𝑁   𝑥,𝑄,𝑓   𝑥,𝑆   𝜑,𝑢   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝑃(𝑥,𝑢,𝑓)   𝑄(𝑢)   𝑆(𝑢,𝑓)   𝐺(𝑢)   𝐾(𝑓)

Proof of Theorem iseqf1olemjpcl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 iseqf1olemjpcl.p . . . . 5 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
21csbeq2i 3151 . . . 4 𝐽 / 𝑓𝑃 = 𝐽 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
3 iseqf1olemqf.j . . . . . . 7 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
4 f1of 5572 . . . . . . 7 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
53, 4syl 14 . . . . . 6 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
6 iseqf1olemqf.k . . . . . . . 8 (𝜑𝐾 ∈ (𝑀...𝑁))
7 elfzel1 10220 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
86, 7syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
9 elfzel2 10219 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
106, 9syl 14 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
118, 10fzfigd 10653 . . . . . 6 (𝜑 → (𝑀...𝑁) ∈ Fin)
12 fex 5868 . . . . . 6 ((𝐽:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → 𝐽 ∈ V)
135, 11, 12syl2anc 411 . . . . 5 (𝜑𝐽 ∈ V)
14 nfcvd 2373 . . . . . 6 (𝐽 ∈ V → 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀))))
15 fveq1 5626 . . . . . . . . 9 (𝑓 = 𝐽 → (𝑓𝑥) = (𝐽𝑥))
1615fveq2d 5631 . . . . . . . 8 (𝑓 = 𝐽 → (𝐺‘(𝑓𝑥)) = (𝐺‘(𝐽𝑥)))
1716ifeq1d 3620 . . . . . . 7 (𝑓 = 𝐽 → if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀)))
1817mpteq2dv 4175 . . . . . 6 (𝑓 = 𝐽 → (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀))))
1914, 18csbiegf 3168 . . . . 5 (𝐽 ∈ V → 𝐽 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀))))
2013, 19syl 14 . . . 4 (𝜑𝐽 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀))))
212, 20eqtrid 2274 . . 3 (𝜑𝐽 / 𝑓𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀))))
22 fveq2 5627 . . . . . 6 (𝑎 = (𝐽𝑥) → (𝐺𝑎) = (𝐺‘(𝐽𝑥)))
2322eleq1d 2298 . . . . 5 (𝑎 = (𝐽𝑥) → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺‘(𝐽𝑥)) ∈ 𝑆))
24 iseqf1olemjpcl.g . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
2524ralrimiva 2603 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
26 fveq2 5627 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐺𝑥) = (𝐺𝑎))
2726eleq1d 2298 . . . . . . . 8 (𝑥 = 𝑎 → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺𝑎) ∈ 𝑆))
2827cbvralv 2765 . . . . . . 7 (∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
2925, 28sylib 122 . . . . . 6 (𝜑 → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
3029ad2antrr 488 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
315ad2antrr 488 . . . . . . 7 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
32 simpr 110 . . . . . . . 8 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥𝑁)
33 simplr 528 . . . . . . . . 9 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (ℤ𝑀))
3410ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑁 ∈ ℤ)
35 elfz5 10213 . . . . . . . . 9 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝑁))
3633, 34, 35syl2anc 411 . . . . . . . 8 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝑁))
3732, 36mpbird 167 . . . . . . 7 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (𝑀...𝑁))
3831, 37ffvelcdmd 5771 . . . . . 6 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐽𝑥) ∈ (𝑀...𝑁))
39 elfzuz 10217 . . . . . 6 ((𝐽𝑥) ∈ (𝑀...𝑁) → (𝐽𝑥) ∈ (ℤ𝑀))
4038, 39syl 14 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐽𝑥) ∈ (ℤ𝑀))
4123, 30, 40rspcdva 2912 . . . 4 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐺‘(𝐽𝑥)) ∈ 𝑆)
42 fveq2 5627 . . . . . 6 (𝑎 = 𝑀 → (𝐺𝑎) = (𝐺𝑀))
4342eleq1d 2298 . . . . 5 (𝑎 = 𝑀 → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺𝑀) ∈ 𝑆))
4429ad2antrr 488 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
458ad2antrr 488 . . . . . 6 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → 𝑀 ∈ ℤ)
46 uzid 9736 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
4745, 46syl 14 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → 𝑀 ∈ (ℤ𝑀))
4843, 44, 47rspcdva 2912 . . . 4 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → (𝐺𝑀) ∈ 𝑆)
49 eluzelz 9731 . . . . 5 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
50 zdcle 9523 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑥𝑁)
5149, 10, 50syl2anr 290 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → DECID 𝑥𝑁)
5241, 48, 51ifcldadc 3632 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀)) ∈ 𝑆)
5321, 52fvmpt2d 5721 . 2 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐽 / 𝑓𝑃𝑥) = if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀)))
5453, 52eqeltrd 2306 1 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 839   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  csb 3124  ifcif 3602   class class class wbr 4083  cmpt 4145  ccnv 4718  wf 5314  1-1-ontowf1o 5317  cfv 5318  (class class class)co 6001  Fincfn 6887  1c1 8000  cle 8182  cmin 8317  cz 9446  cuz 9722  ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-er 6680  df-en 6888  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  seq3f1olemqsumkj  10733  seq3f1olemqsumk  10734  seq3f1olemqsum  10735
  Copyright terms: Public domain W3C validator