Step | Hyp | Ref
| Expression |
1 | | iseqf1olemjpcl.p |
. . . . 5
⊢ 𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
2 | 1 | csbeq2i 3072 |
. . . 4
⊢
⦋𝐽 /
𝑓⦌𝑃 = ⦋𝐽 / 𝑓⦌(𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) |
3 | | iseqf1olemqf.j |
. . . . . . 7
⊢ (𝜑 → 𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁)) |
4 | | f1of 5432 |
. . . . . . 7
⊢ (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
5 | 3, 4 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
6 | | iseqf1olemqf.k |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
7 | | elfzel1 9959 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
8 | 6, 7 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
9 | | elfzel2 9958 |
. . . . . . . 8
⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
10 | 6, 9 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) |
11 | 8, 10 | fzfigd 10366 |
. . . . . 6
⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) |
12 | | fex 5714 |
. . . . . 6
⊢ ((𝐽:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → 𝐽 ∈ V) |
13 | 5, 11, 12 | syl2anc 409 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ V) |
14 | | nfcvd 2309 |
. . . . . 6
⊢ (𝐽 ∈ V →
Ⅎ𝑓(𝑥 ∈
(ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) |
15 | | fveq1 5485 |
. . . . . . . . 9
⊢ (𝑓 = 𝐽 → (𝑓‘𝑥) = (𝐽‘𝑥)) |
16 | 15 | fveq2d 5490 |
. . . . . . . 8
⊢ (𝑓 = 𝐽 → (𝐺‘(𝑓‘𝑥)) = (𝐺‘(𝐽‘𝑥))) |
17 | 16 | ifeq1d 3537 |
. . . . . . 7
⊢ (𝑓 = 𝐽 → if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀)) = if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀))) |
18 | 17 | mpteq2dv 4073 |
. . . . . 6
⊢ (𝑓 = 𝐽 → (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) |
19 | 14, 18 | csbiegf 3088 |
. . . . 5
⊢ (𝐽 ∈ V →
⦋𝐽 / 𝑓⦌(𝑥 ∈
(ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) |
20 | 13, 19 | syl 14 |
. . . 4
⊢ (𝜑 → ⦋𝐽 / 𝑓⦌(𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝑓‘𝑥)), (𝐺‘𝑀))) = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) |
21 | 2, 20 | syl5eq 2211 |
. . 3
⊢ (𝜑 → ⦋𝐽 / 𝑓⦌𝑃 = (𝑥 ∈ (ℤ≥‘𝑀) ↦ if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)))) |
22 | | fveq2 5486 |
. . . . . 6
⊢ (𝑎 = (𝐽‘𝑥) → (𝐺‘𝑎) = (𝐺‘(𝐽‘𝑥))) |
23 | 22 | eleq1d 2235 |
. . . . 5
⊢ (𝑎 = (𝐽‘𝑥) → ((𝐺‘𝑎) ∈ 𝑆 ↔ (𝐺‘(𝐽‘𝑥)) ∈ 𝑆)) |
24 | | iseqf1olemjpcl.g |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
25 | 24 | ralrimiva 2539 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆) |
26 | | fveq2 5486 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → (𝐺‘𝑥) = (𝐺‘𝑎)) |
27 | 26 | eleq1d 2235 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → ((𝐺‘𝑥) ∈ 𝑆 ↔ (𝐺‘𝑎) ∈ 𝑆)) |
28 | 27 | cbvralv 2692 |
. . . . . . 7
⊢
(∀𝑥 ∈
(ℤ≥‘𝑀)(𝐺‘𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) |
29 | 25, 28 | sylib 121 |
. . . . . 6
⊢ (𝜑 → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) |
30 | 29 | ad2antrr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) |
31 | 5 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁)) |
32 | | simpr 109 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑥 ≤ 𝑁) |
33 | | simplr 520 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑥 ∈ (ℤ≥‘𝑀)) |
34 | 10 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑁 ∈ ℤ) |
35 | | elfz5 9952 |
. . . . . . . . 9
⊢ ((𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ≤ 𝑁)) |
36 | 33, 34, 35 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ≤ 𝑁)) |
37 | 32, 36 | mpbird 166 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → 𝑥 ∈ (𝑀...𝑁)) |
38 | 31, 37 | ffvelrnd 5621 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → (𝐽‘𝑥) ∈ (𝑀...𝑁)) |
39 | | elfzuz 9956 |
. . . . . 6
⊢ ((𝐽‘𝑥) ∈ (𝑀...𝑁) → (𝐽‘𝑥) ∈ (ℤ≥‘𝑀)) |
40 | 38, 39 | syl 14 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → (𝐽‘𝑥) ∈ (ℤ≥‘𝑀)) |
41 | 23, 30, 40 | rspcdva 2835 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ≤ 𝑁) → (𝐺‘(𝐽‘𝑥)) ∈ 𝑆) |
42 | | fveq2 5486 |
. . . . . 6
⊢ (𝑎 = 𝑀 → (𝐺‘𝑎) = (𝐺‘𝑀)) |
43 | 42 | eleq1d 2235 |
. . . . 5
⊢ (𝑎 = 𝑀 → ((𝐺‘𝑎) ∈ 𝑆 ↔ (𝐺‘𝑀) ∈ 𝑆)) |
44 | 29 | ad2antrr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑥 ≤ 𝑁) → ∀𝑎 ∈ (ℤ≥‘𝑀)(𝐺‘𝑎) ∈ 𝑆) |
45 | 8 | ad2antrr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑥 ≤ 𝑁) → 𝑀 ∈ ℤ) |
46 | | uzid 9480 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
47 | 45, 46 | syl 14 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑥 ≤ 𝑁) → 𝑀 ∈ (ℤ≥‘𝑀)) |
48 | 43, 44, 47 | rspcdva 2835 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) ∧ ¬ 𝑥 ≤ 𝑁) → (𝐺‘𝑀) ∈ 𝑆) |
49 | | eluzelz 9475 |
. . . . 5
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → 𝑥 ∈ ℤ) |
50 | | zdcle 9267 |
. . . . 5
⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
DECID 𝑥 ≤
𝑁) |
51 | 49, 10, 50 | syl2anr 288 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → DECID
𝑥 ≤ 𝑁) |
52 | 41, 48, 51 | ifcldadc 3549 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀)) ∈ 𝑆) |
53 | 21, 52 | fvmpt2d 5572 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝐽 / 𝑓⦌𝑃‘𝑥) = if(𝑥 ≤ 𝑁, (𝐺‘(𝐽‘𝑥)), (𝐺‘𝑀))) |
54 | 53, 52 | eqeltrd 2243 |
1
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (⦋𝐽 / 𝑓⦌𝑃‘𝑥) ∈ 𝑆) |