ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemjpcl GIF version

Theorem iseqf1olemjpcl 10497
Description: Lemma for seq3f1o 10506. A closure lemma involving 𝐽 and 𝑃. (Contributed by Jim Kingdon, 29-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k (𝜑𝐾 ∈ (𝑀...𝑁))
iseqf1olemqf.j (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
iseqf1olemqf.q 𝑄 = (𝑢 ∈ (𝑀...𝑁) ↦ if(𝑢 ∈ (𝐾...(𝐽𝐾)), if(𝑢 = 𝐾, 𝐾, (𝐽‘(𝑢 − 1))), (𝐽𝑢)))
iseqf1olemjpcl.g ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqf1olemjpcl.p 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
Assertion
Ref Expression
iseqf1olemjpcl ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
Distinct variable groups:   𝑥,𝐺,𝑓   𝑥,𝐽,𝑓   𝑢,𝐽   𝑢,𝐾   𝑥,𝐾   𝑥,𝑀,𝑓   𝑢,𝑀   𝑓,𝑁,𝑥   𝑢,𝑁   𝑥,𝑄,𝑓   𝑥,𝑆   𝜑,𝑢   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝑃(𝑥,𝑢,𝑓)   𝑄(𝑢)   𝑆(𝑢,𝑓)   𝐺(𝑢)   𝐾(𝑓)

Proof of Theorem iseqf1olemjpcl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 iseqf1olemjpcl.p . . . . 5 𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
21csbeq2i 3086 . . . 4 𝐽 / 𝑓𝑃 = 𝐽 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)))
3 iseqf1olemqf.j . . . . . . 7 (𝜑𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁))
4 f1of 5463 . . . . . . 7 (𝐽:(𝑀...𝑁)–1-1-onto→(𝑀...𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
53, 4syl 14 . . . . . 6 (𝜑𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
6 iseqf1olemqf.k . . . . . . . 8 (𝜑𝐾 ∈ (𝑀...𝑁))
7 elfzel1 10026 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
86, 7syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
9 elfzel2 10025 . . . . . . . 8 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ)
106, 9syl 14 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
118, 10fzfigd 10433 . . . . . 6 (𝜑 → (𝑀...𝑁) ∈ Fin)
12 fex 5747 . . . . . 6 ((𝐽:(𝑀...𝑁)⟶(𝑀...𝑁) ∧ (𝑀...𝑁) ∈ Fin) → 𝐽 ∈ V)
135, 11, 12syl2anc 411 . . . . 5 (𝜑𝐽 ∈ V)
14 nfcvd 2320 . . . . . 6 (𝐽 ∈ V → 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀))))
15 fveq1 5516 . . . . . . . . 9 (𝑓 = 𝐽 → (𝑓𝑥) = (𝐽𝑥))
1615fveq2d 5521 . . . . . . . 8 (𝑓 = 𝐽 → (𝐺‘(𝑓𝑥)) = (𝐺‘(𝐽𝑥)))
1716ifeq1d 3553 . . . . . . 7 (𝑓 = 𝐽 → if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀)) = if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀)))
1817mpteq2dv 4096 . . . . . 6 (𝑓 = 𝐽 → (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀))))
1914, 18csbiegf 3102 . . . . 5 (𝐽 ∈ V → 𝐽 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀))))
2013, 19syl 14 . . . 4 (𝜑𝐽 / 𝑓(𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝑓𝑥)), (𝐺𝑀))) = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀))))
212, 20eqtrid 2222 . . 3 (𝜑𝐽 / 𝑓𝑃 = (𝑥 ∈ (ℤ𝑀) ↦ if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀))))
22 fveq2 5517 . . . . . 6 (𝑎 = (𝐽𝑥) → (𝐺𝑎) = (𝐺‘(𝐽𝑥)))
2322eleq1d 2246 . . . . 5 (𝑎 = (𝐽𝑥) → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺‘(𝐽𝑥)) ∈ 𝑆))
24 iseqf1olemjpcl.g . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
2524ralrimiva 2550 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆)
26 fveq2 5517 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐺𝑥) = (𝐺𝑎))
2726eleq1d 2246 . . . . . . . 8 (𝑥 = 𝑎 → ((𝐺𝑥) ∈ 𝑆 ↔ (𝐺𝑎) ∈ 𝑆))
2827cbvralv 2705 . . . . . . 7 (∀𝑥 ∈ (ℤ𝑀)(𝐺𝑥) ∈ 𝑆 ↔ ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
2925, 28sylib 122 . . . . . 6 (𝜑 → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
3029ad2antrr 488 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
315ad2antrr 488 . . . . . . 7 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝐽:(𝑀...𝑁)⟶(𝑀...𝑁))
32 simpr 110 . . . . . . . 8 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥𝑁)
33 simplr 528 . . . . . . . . 9 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (ℤ𝑀))
3410ad2antrr 488 . . . . . . . . 9 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑁 ∈ ℤ)
35 elfz5 10019 . . . . . . . . 9 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝑁))
3633, 34, 35syl2anc 411 . . . . . . . 8 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥𝑁))
3732, 36mpbird 167 . . . . . . 7 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → 𝑥 ∈ (𝑀...𝑁))
3831, 37ffvelcdmd 5654 . . . . . 6 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐽𝑥) ∈ (𝑀...𝑁))
39 elfzuz 10023 . . . . . 6 ((𝐽𝑥) ∈ (𝑀...𝑁) → (𝐽𝑥) ∈ (ℤ𝑀))
4038, 39syl 14 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐽𝑥) ∈ (ℤ𝑀))
4123, 30, 40rspcdva 2848 . . . 4 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ 𝑥𝑁) → (𝐺‘(𝐽𝑥)) ∈ 𝑆)
42 fveq2 5517 . . . . . 6 (𝑎 = 𝑀 → (𝐺𝑎) = (𝐺𝑀))
4342eleq1d 2246 . . . . 5 (𝑎 = 𝑀 → ((𝐺𝑎) ∈ 𝑆 ↔ (𝐺𝑀) ∈ 𝑆))
4429ad2antrr 488 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → ∀𝑎 ∈ (ℤ𝑀)(𝐺𝑎) ∈ 𝑆)
458ad2antrr 488 . . . . . 6 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → 𝑀 ∈ ℤ)
46 uzid 9544 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
4745, 46syl 14 . . . . 5 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → 𝑀 ∈ (ℤ𝑀))
4843, 44, 47rspcdva 2848 . . . 4 (((𝜑𝑥 ∈ (ℤ𝑀)) ∧ ¬ 𝑥𝑁) → (𝐺𝑀) ∈ 𝑆)
49 eluzelz 9539 . . . . 5 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
50 zdcle 9331 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID 𝑥𝑁)
5149, 10, 50syl2anr 290 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → DECID 𝑥𝑁)
5241, 48, 51ifcldadc 3565 . . 3 ((𝜑𝑥 ∈ (ℤ𝑀)) → if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀)) ∈ 𝑆)
5321, 52fvmpt2d 5604 . 2 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐽 / 𝑓𝑃𝑥) = if(𝑥𝑁, (𝐺‘(𝐽𝑥)), (𝐺𝑀)))
5453, 52eqeltrd 2254 1 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐽 / 𝑓𝑃𝑥) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  Vcvv 2739  csb 3059  ifcif 3536   class class class wbr 4005  cmpt 4066  ccnv 4627  wf 5214  1-1-ontowf1o 5217  cfv 5218  (class class class)co 5877  Fincfn 6742  1c1 7814  cle 7995  cmin 8130  cz 9255  cuz 9530  ...cfz 10010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-1o 6419  df-er 6537  df-en 6743  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011
This theorem is referenced by:  seq3f1olemqsumkj  10500  seq3f1olemqsumk  10501  seq3f1olemqsum  10502
  Copyright terms: Public domain W3C validator