ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodabs GIF version

Theorem fprodabs 12135
Description: The absolute value of a finite product. (Contributed by Scott Fenton, 25-Dec-2017.)
Hypotheses
Ref Expression
fprodabs.1 𝑍 = (ℤ𝑀)
fprodabs.2 (𝜑𝑁𝑍)
fprodabs.3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fprodabs (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodabs
Dummy variables 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodabs.2 . . 3 (𝜑𝑁𝑍)
2 fprodabs.1 . . 3 𝑍 = (ℤ𝑀)
31, 2eleqtrdi 2322 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
4 oveq2 6015 . . . . . . 7 (𝑎 = 𝑀 → (𝑀...𝑎) = (𝑀...𝑀))
54prodeq1d 12083 . . . . . 6 (𝑎 = 𝑀 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑀)𝐴)
65fveq2d 5633 . . . . 5 (𝑎 = 𝑀 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴))
74prodeq1d 12083 . . . . 5 (𝑎 = 𝑀 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))
86, 7eqeq12d 2244 . . . 4 (𝑎 = 𝑀 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴)))
98imbi2d 230 . . 3 (𝑎 = 𝑀 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))))
10 oveq2 6015 . . . . . . 7 (𝑎 = 𝑛 → (𝑀...𝑎) = (𝑀...𝑛))
1110prodeq1d 12083 . . . . . 6 (𝑎 = 𝑛 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑛)𝐴)
1211fveq2d 5633 . . . . 5 (𝑎 = 𝑛 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴))
1310prodeq1d 12083 . . . . 5 (𝑎 = 𝑛 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴))
1412, 13eqeq12d 2244 . . . 4 (𝑎 = 𝑛 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)))
1514imbi2d 230 . . 3 (𝑎 = 𝑛 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴))))
16 oveq2 6015 . . . . . . 7 (𝑎 = (𝑛 + 1) → (𝑀...𝑎) = (𝑀...(𝑛 + 1)))
1716prodeq1d 12083 . . . . . 6 (𝑎 = (𝑛 + 1) → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴)
1817fveq2d 5633 . . . . 5 (𝑎 = (𝑛 + 1) → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴))
1916prodeq1d 12083 . . . . 5 (𝑎 = (𝑛 + 1) → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))
2018, 19eqeq12d 2244 . . . 4 (𝑎 = (𝑛 + 1) → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴)))
2120imbi2d 230 . . 3 (𝑎 = (𝑛 + 1) → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
22 oveq2 6015 . . . . . . 7 (𝑎 = 𝑁 → (𝑀...𝑎) = (𝑀...𝑁))
2322prodeq1d 12083 . . . . . 6 (𝑎 = 𝑁 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑁)𝐴)
2423fveq2d 5633 . . . . 5 (𝑎 = 𝑁 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴))
2522prodeq1d 12083 . . . . 5 (𝑎 = 𝑁 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
2624, 25eqeq12d 2244 . . . 4 (𝑎 = 𝑁 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴)))
2726imbi2d 230 . . 3 (𝑎 = 𝑁 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))))
28 csbfv2g 5670 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 / 𝑘(abs‘𝐴) = (abs‘𝑀 / 𝑘𝐴))
2928adantl 277 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘(abs‘𝐴) = (abs‘𝑀 / 𝑘𝐴))
30 fzsn 10270 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3130adantl 277 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → (𝑀...𝑀) = {𝑀})
3231prodeq1d 12083 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴) = ∏𝑘 ∈ {𝑀} (abs‘𝐴))
33 simpr 110 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
34 uzid 9744 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3534, 2eleqtrrdi 2323 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀𝑍)
36 fprodabs.3 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
3736ralrimiva 2603 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝑍 𝐴 ∈ ℂ)
38 nfcsb1v 3157 . . . . . . . . . . . . . 14 𝑘𝑀 / 𝑘𝐴
3938nfel1 2383 . . . . . . . . . . . . 13 𝑘𝑀 / 𝑘𝐴 ∈ ℂ
40 csbeq1a 3133 . . . . . . . . . . . . . 14 (𝑘 = 𝑀𝐴 = 𝑀 / 𝑘𝐴)
4140eleq1d 2298 . . . . . . . . . . . . 13 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝑀 / 𝑘𝐴 ∈ ℂ))
4239, 41rspc 2901 . . . . . . . . . . . 12 (𝑀𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → 𝑀 / 𝑘𝐴 ∈ ℂ))
4337, 42mpan9 281 . . . . . . . . . . 11 ((𝜑𝑀𝑍) → 𝑀 / 𝑘𝐴 ∈ ℂ)
4435, 43sylan2 286 . . . . . . . . . 10 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘𝐴 ∈ ℂ)
4544abscld 11700 . . . . . . . . 9 ((𝜑𝑀 ∈ ℤ) → (abs‘𝑀 / 𝑘𝐴) ∈ ℝ)
4645recnd 8183 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → (abs‘𝑀 / 𝑘𝐴) ∈ ℂ)
4729, 46eqeltrd 2306 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘(abs‘𝐴) ∈ ℂ)
48 prodsns 12122 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 / 𝑘(abs‘𝐴) ∈ ℂ) → ∏𝑘 ∈ {𝑀} (abs‘𝐴) = 𝑀 / 𝑘(abs‘𝐴))
4933, 47, 48syl2anc 411 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ {𝑀} (abs‘𝐴) = 𝑀 / 𝑘(abs‘𝐴))
5032, 49eqtrd 2262 . . . . 5 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴) = 𝑀 / 𝑘(abs‘𝐴))
5130prodeq1d 12083 . . . . . . . 8 (𝑀 ∈ ℤ → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = ∏𝑘 ∈ {𝑀}𝐴)
5251adantl 277 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = ∏𝑘 ∈ {𝑀}𝐴)
53 prodsns 12122 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑀 / 𝑘𝐴 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝑀 / 𝑘𝐴)
5433, 44, 53syl2anc 411 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝑀 / 𝑘𝐴)
5552, 54eqtrd 2262 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = 𝑀 / 𝑘𝐴)
5655fveq2d 5633 . . . . 5 ((𝜑𝑀 ∈ ℤ) → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = (abs‘𝑀 / 𝑘𝐴))
5729, 50, 563eqtr4rd 2273 . . . 4 ((𝜑𝑀 ∈ ℤ) → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))
5857expcom 116 . . 3 (𝑀 ∈ ℤ → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴)))
59 simp3 1023 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴))
60 peano2uz 9786 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ (ℤ𝑀))
61 csbfv2g 5670 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (ℤ𝑀) → (𝑛 + 1) / 𝑘(abs‘𝐴) = (abs‘(𝑛 + 1) / 𝑘𝐴))
6260, 61syl 14 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) / 𝑘(abs‘𝐴) = (abs‘(𝑛 + 1) / 𝑘𝐴))
6362eqcomd 2235 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → (abs‘(𝑛 + 1) / 𝑘𝐴) = (𝑛 + 1) / 𝑘(abs‘𝐴))
64633ad2ant2 1043 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘(𝑛 + 1) / 𝑘𝐴) = (𝑛 + 1) / 𝑘(abs‘𝐴))
6559, 64oveq12d 6025 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · (𝑛 + 1) / 𝑘(abs‘𝐴)))
66 simpr 110 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
67 elfzuz 10225 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...(𝑛 + 1)) → 𝑘 ∈ (ℤ𝑀))
6867, 2eleqtrrdi 2323 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...(𝑛 + 1)) → 𝑘𝑍)
6968, 36sylan2 286 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀...(𝑛 + 1))) → 𝐴 ∈ ℂ)
7069adantlr 477 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → 𝐴 ∈ ℂ)
7166, 70fprodp1s 12121 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴 = (∏𝑘 ∈ (𝑀...𝑛)𝐴 · (𝑛 + 1) / 𝑘𝐴))
7271fveq2d 5633 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = (abs‘(∏𝑘 ∈ (𝑀...𝑛)𝐴 · (𝑛 + 1) / 𝑘𝐴)))
73 eluzel2 9735 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
7473adantl 277 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
75 eluzelz 9739 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
7675adantl 277 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℤ)
7774, 76fzfigd 10661 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑀...𝑛) ∈ Fin)
78 elfzuz 10225 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
7978, 2eleqtrrdi 2323 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
8079, 36sylan2 286 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝐴 ∈ ℂ)
8180adantlr 477 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐴 ∈ ℂ)
8277, 81fprodcl 12126 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∏𝑘 ∈ (𝑀...𝑛)𝐴 ∈ ℂ)
8360, 2eleqtrrdi 2323 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ 𝑍)
84 nfcsb1v 3157 . . . . . . . . . . . . . 14 𝑘(𝑛 + 1) / 𝑘𝐴
8584nfel1 2383 . . . . . . . . . . . . 13 𝑘(𝑛 + 1) / 𝑘𝐴 ∈ ℂ
86 csbeq1a 3133 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → 𝐴 = (𝑛 + 1) / 𝑘𝐴)
8786eleq1d 2298 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → (𝐴 ∈ ℂ ↔ (𝑛 + 1) / 𝑘𝐴 ∈ ℂ))
8885, 87rspc 2901 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ 𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ))
8937, 88mpan9 281 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ)
9083, 89sylan2 286 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ)
9182, 90absmuld 11713 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (abs‘(∏𝑘 ∈ (𝑀...𝑛)𝐴 · (𝑛 + 1) / 𝑘𝐴)) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)))
9272, 91eqtrd 2262 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)))
93923adant3 1041 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)))
9470abscld 11700 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → (abs‘𝐴) ∈ ℝ)
9594recnd 8183 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → (abs‘𝐴) ∈ ℂ)
9666, 95fprodp1s 12121 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · (𝑛 + 1) / 𝑘(abs‘𝐴)))
97963adant3 1041 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · (𝑛 + 1) / 𝑘(abs‘𝐴)))
9865, 93, 973eqtr4d 2272 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))
99983exp 1226 . . . . 5 (𝜑 → (𝑛 ∈ (ℤ𝑀) → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
10099com12 30 . . . 4 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
101100a2d 26 . . 3 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
1029, 15, 21, 27, 58, 101uzind4 9791 . 2 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴)))
1033, 102mpcom 36 1 (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wral 2508  csb 3124  {csn 3666  cfv 5318  (class class class)co 6007  cc 8005  1c1 8008   + caddc 8010   · cmul 8012  cz 9454  cuz 9730  ...cfz 10212  abscabs 11516  cprod 12069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-proddc 12070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator