ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodabs GIF version

Theorem fprodabs 11759
Description: The absolute value of a finite product. (Contributed by Scott Fenton, 25-Dec-2017.)
Hypotheses
Ref Expression
fprodabs.1 𝑍 = (ℤ𝑀)
fprodabs.2 (𝜑𝑁𝑍)
fprodabs.3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fprodabs (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodabs
Dummy variables 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodabs.2 . . 3 (𝜑𝑁𝑍)
2 fprodabs.1 . . 3 𝑍 = (ℤ𝑀)
31, 2eleqtrdi 2286 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
4 oveq2 5926 . . . . . . 7 (𝑎 = 𝑀 → (𝑀...𝑎) = (𝑀...𝑀))
54prodeq1d 11707 . . . . . 6 (𝑎 = 𝑀 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑀)𝐴)
65fveq2d 5558 . . . . 5 (𝑎 = 𝑀 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴))
74prodeq1d 11707 . . . . 5 (𝑎 = 𝑀 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))
86, 7eqeq12d 2208 . . . 4 (𝑎 = 𝑀 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴)))
98imbi2d 230 . . 3 (𝑎 = 𝑀 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))))
10 oveq2 5926 . . . . . . 7 (𝑎 = 𝑛 → (𝑀...𝑎) = (𝑀...𝑛))
1110prodeq1d 11707 . . . . . 6 (𝑎 = 𝑛 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑛)𝐴)
1211fveq2d 5558 . . . . 5 (𝑎 = 𝑛 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴))
1310prodeq1d 11707 . . . . 5 (𝑎 = 𝑛 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴))
1412, 13eqeq12d 2208 . . . 4 (𝑎 = 𝑛 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)))
1514imbi2d 230 . . 3 (𝑎 = 𝑛 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴))))
16 oveq2 5926 . . . . . . 7 (𝑎 = (𝑛 + 1) → (𝑀...𝑎) = (𝑀...(𝑛 + 1)))
1716prodeq1d 11707 . . . . . 6 (𝑎 = (𝑛 + 1) → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴)
1817fveq2d 5558 . . . . 5 (𝑎 = (𝑛 + 1) → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴))
1916prodeq1d 11707 . . . . 5 (𝑎 = (𝑛 + 1) → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))
2018, 19eqeq12d 2208 . . . 4 (𝑎 = (𝑛 + 1) → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴)))
2120imbi2d 230 . . 3 (𝑎 = (𝑛 + 1) → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
22 oveq2 5926 . . . . . . 7 (𝑎 = 𝑁 → (𝑀...𝑎) = (𝑀...𝑁))
2322prodeq1d 11707 . . . . . 6 (𝑎 = 𝑁 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑁)𝐴)
2423fveq2d 5558 . . . . 5 (𝑎 = 𝑁 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴))
2522prodeq1d 11707 . . . . 5 (𝑎 = 𝑁 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
2624, 25eqeq12d 2208 . . . 4 (𝑎 = 𝑁 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴)))
2726imbi2d 230 . . 3 (𝑎 = 𝑁 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))))
28 csbfv2g 5593 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 / 𝑘(abs‘𝐴) = (abs‘𝑀 / 𝑘𝐴))
2928adantl 277 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘(abs‘𝐴) = (abs‘𝑀 / 𝑘𝐴))
30 fzsn 10132 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3130adantl 277 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → (𝑀...𝑀) = {𝑀})
3231prodeq1d 11707 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴) = ∏𝑘 ∈ {𝑀} (abs‘𝐴))
33 simpr 110 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
34 uzid 9606 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3534, 2eleqtrrdi 2287 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀𝑍)
36 fprodabs.3 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
3736ralrimiva 2567 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝑍 𝐴 ∈ ℂ)
38 nfcsb1v 3113 . . . . . . . . . . . . . 14 𝑘𝑀 / 𝑘𝐴
3938nfel1 2347 . . . . . . . . . . . . 13 𝑘𝑀 / 𝑘𝐴 ∈ ℂ
40 csbeq1a 3089 . . . . . . . . . . . . . 14 (𝑘 = 𝑀𝐴 = 𝑀 / 𝑘𝐴)
4140eleq1d 2262 . . . . . . . . . . . . 13 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝑀 / 𝑘𝐴 ∈ ℂ))
4239, 41rspc 2858 . . . . . . . . . . . 12 (𝑀𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → 𝑀 / 𝑘𝐴 ∈ ℂ))
4337, 42mpan9 281 . . . . . . . . . . 11 ((𝜑𝑀𝑍) → 𝑀 / 𝑘𝐴 ∈ ℂ)
4435, 43sylan2 286 . . . . . . . . . 10 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘𝐴 ∈ ℂ)
4544abscld 11325 . . . . . . . . 9 ((𝜑𝑀 ∈ ℤ) → (abs‘𝑀 / 𝑘𝐴) ∈ ℝ)
4645recnd 8048 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → (abs‘𝑀 / 𝑘𝐴) ∈ ℂ)
4729, 46eqeltrd 2270 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘(abs‘𝐴) ∈ ℂ)
48 prodsns 11746 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 / 𝑘(abs‘𝐴) ∈ ℂ) → ∏𝑘 ∈ {𝑀} (abs‘𝐴) = 𝑀 / 𝑘(abs‘𝐴))
4933, 47, 48syl2anc 411 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ {𝑀} (abs‘𝐴) = 𝑀 / 𝑘(abs‘𝐴))
5032, 49eqtrd 2226 . . . . 5 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴) = 𝑀 / 𝑘(abs‘𝐴))
5130prodeq1d 11707 . . . . . . . 8 (𝑀 ∈ ℤ → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = ∏𝑘 ∈ {𝑀}𝐴)
5251adantl 277 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = ∏𝑘 ∈ {𝑀}𝐴)
53 prodsns 11746 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑀 / 𝑘𝐴 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝑀 / 𝑘𝐴)
5433, 44, 53syl2anc 411 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝑀 / 𝑘𝐴)
5552, 54eqtrd 2226 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = 𝑀 / 𝑘𝐴)
5655fveq2d 5558 . . . . 5 ((𝜑𝑀 ∈ ℤ) → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = (abs‘𝑀 / 𝑘𝐴))
5729, 50, 563eqtr4rd 2237 . . . 4 ((𝜑𝑀 ∈ ℤ) → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))
5857expcom 116 . . 3 (𝑀 ∈ ℤ → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴)))
59 simp3 1001 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴))
60 peano2uz 9648 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ (ℤ𝑀))
61 csbfv2g 5593 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (ℤ𝑀) → (𝑛 + 1) / 𝑘(abs‘𝐴) = (abs‘(𝑛 + 1) / 𝑘𝐴))
6260, 61syl 14 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) / 𝑘(abs‘𝐴) = (abs‘(𝑛 + 1) / 𝑘𝐴))
6362eqcomd 2199 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → (abs‘(𝑛 + 1) / 𝑘𝐴) = (𝑛 + 1) / 𝑘(abs‘𝐴))
64633ad2ant2 1021 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘(𝑛 + 1) / 𝑘𝐴) = (𝑛 + 1) / 𝑘(abs‘𝐴))
6559, 64oveq12d 5936 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · (𝑛 + 1) / 𝑘(abs‘𝐴)))
66 simpr 110 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
67 elfzuz 10087 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...(𝑛 + 1)) → 𝑘 ∈ (ℤ𝑀))
6867, 2eleqtrrdi 2287 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...(𝑛 + 1)) → 𝑘𝑍)
6968, 36sylan2 286 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀...(𝑛 + 1))) → 𝐴 ∈ ℂ)
7069adantlr 477 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → 𝐴 ∈ ℂ)
7166, 70fprodp1s 11745 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴 = (∏𝑘 ∈ (𝑀...𝑛)𝐴 · (𝑛 + 1) / 𝑘𝐴))
7271fveq2d 5558 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = (abs‘(∏𝑘 ∈ (𝑀...𝑛)𝐴 · (𝑛 + 1) / 𝑘𝐴)))
73 eluzel2 9597 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
7473adantl 277 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
75 eluzelz 9601 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
7675adantl 277 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℤ)
7774, 76fzfigd 10502 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑀...𝑛) ∈ Fin)
78 elfzuz 10087 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
7978, 2eleqtrrdi 2287 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
8079, 36sylan2 286 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝐴 ∈ ℂ)
8180adantlr 477 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐴 ∈ ℂ)
8277, 81fprodcl 11750 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∏𝑘 ∈ (𝑀...𝑛)𝐴 ∈ ℂ)
8360, 2eleqtrrdi 2287 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ 𝑍)
84 nfcsb1v 3113 . . . . . . . . . . . . . 14 𝑘(𝑛 + 1) / 𝑘𝐴
8584nfel1 2347 . . . . . . . . . . . . 13 𝑘(𝑛 + 1) / 𝑘𝐴 ∈ ℂ
86 csbeq1a 3089 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → 𝐴 = (𝑛 + 1) / 𝑘𝐴)
8786eleq1d 2262 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → (𝐴 ∈ ℂ ↔ (𝑛 + 1) / 𝑘𝐴 ∈ ℂ))
8885, 87rspc 2858 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ 𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ))
8937, 88mpan9 281 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ)
9083, 89sylan2 286 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ)
9182, 90absmuld 11338 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (abs‘(∏𝑘 ∈ (𝑀...𝑛)𝐴 · (𝑛 + 1) / 𝑘𝐴)) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)))
9272, 91eqtrd 2226 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)))
93923adant3 1019 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)))
9470abscld 11325 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → (abs‘𝐴) ∈ ℝ)
9594recnd 8048 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → (abs‘𝐴) ∈ ℂ)
9666, 95fprodp1s 11745 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · (𝑛 + 1) / 𝑘(abs‘𝐴)))
97963adant3 1019 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · (𝑛 + 1) / 𝑘(abs‘𝐴)))
9865, 93, 973eqtr4d 2236 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))
99983exp 1204 . . . . 5 (𝜑 → (𝑛 ∈ (ℤ𝑀) → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
10099com12 30 . . . 4 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
101100a2d 26 . . 3 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
1029, 15, 21, 27, 58, 101uzind4 9653 . 2 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴)))
1033, 102mpcom 36 1 (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wral 2472  csb 3080  {csn 3618  cfv 5254  (class class class)co 5918  cc 7870  1c1 7873   + caddc 7875   · cmul 7877  cz 9317  cuz 9592  ...cfz 10074  abscabs 11141  cprod 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator