ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodabs GIF version

Theorem fprodabs 11971
Description: The absolute value of a finite product. (Contributed by Scott Fenton, 25-Dec-2017.)
Hypotheses
Ref Expression
fprodabs.1 𝑍 = (ℤ𝑀)
fprodabs.2 (𝜑𝑁𝑍)
fprodabs.3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fprodabs (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodabs
Dummy variables 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodabs.2 . . 3 (𝜑𝑁𝑍)
2 fprodabs.1 . . 3 𝑍 = (ℤ𝑀)
31, 2eleqtrdi 2299 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
4 oveq2 5959 . . . . . . 7 (𝑎 = 𝑀 → (𝑀...𝑎) = (𝑀...𝑀))
54prodeq1d 11919 . . . . . 6 (𝑎 = 𝑀 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑀)𝐴)
65fveq2d 5587 . . . . 5 (𝑎 = 𝑀 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴))
74prodeq1d 11919 . . . . 5 (𝑎 = 𝑀 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))
86, 7eqeq12d 2221 . . . 4 (𝑎 = 𝑀 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴)))
98imbi2d 230 . . 3 (𝑎 = 𝑀 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))))
10 oveq2 5959 . . . . . . 7 (𝑎 = 𝑛 → (𝑀...𝑎) = (𝑀...𝑛))
1110prodeq1d 11919 . . . . . 6 (𝑎 = 𝑛 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑛)𝐴)
1211fveq2d 5587 . . . . 5 (𝑎 = 𝑛 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴))
1310prodeq1d 11919 . . . . 5 (𝑎 = 𝑛 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴))
1412, 13eqeq12d 2221 . . . 4 (𝑎 = 𝑛 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)))
1514imbi2d 230 . . 3 (𝑎 = 𝑛 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴))))
16 oveq2 5959 . . . . . . 7 (𝑎 = (𝑛 + 1) → (𝑀...𝑎) = (𝑀...(𝑛 + 1)))
1716prodeq1d 11919 . . . . . 6 (𝑎 = (𝑛 + 1) → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴)
1817fveq2d 5587 . . . . 5 (𝑎 = (𝑛 + 1) → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴))
1916prodeq1d 11919 . . . . 5 (𝑎 = (𝑛 + 1) → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))
2018, 19eqeq12d 2221 . . . 4 (𝑎 = (𝑛 + 1) → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴)))
2120imbi2d 230 . . 3 (𝑎 = (𝑛 + 1) → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
22 oveq2 5959 . . . . . . 7 (𝑎 = 𝑁 → (𝑀...𝑎) = (𝑀...𝑁))
2322prodeq1d 11919 . . . . . 6 (𝑎 = 𝑁 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑁)𝐴)
2423fveq2d 5587 . . . . 5 (𝑎 = 𝑁 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴))
2522prodeq1d 11919 . . . . 5 (𝑎 = 𝑁 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
2624, 25eqeq12d 2221 . . . 4 (𝑎 = 𝑁 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴)))
2726imbi2d 230 . . 3 (𝑎 = 𝑁 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))))
28 csbfv2g 5622 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 / 𝑘(abs‘𝐴) = (abs‘𝑀 / 𝑘𝐴))
2928adantl 277 . . . . 5 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘(abs‘𝐴) = (abs‘𝑀 / 𝑘𝐴))
30 fzsn 10195 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
3130adantl 277 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → (𝑀...𝑀) = {𝑀})
3231prodeq1d 11919 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴) = ∏𝑘 ∈ {𝑀} (abs‘𝐴))
33 simpr 110 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
34 uzid 9669 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3534, 2eleqtrrdi 2300 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀𝑍)
36 fprodabs.3 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
3736ralrimiva 2580 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝑍 𝐴 ∈ ℂ)
38 nfcsb1v 3127 . . . . . . . . . . . . . 14 𝑘𝑀 / 𝑘𝐴
3938nfel1 2360 . . . . . . . . . . . . 13 𝑘𝑀 / 𝑘𝐴 ∈ ℂ
40 csbeq1a 3103 . . . . . . . . . . . . . 14 (𝑘 = 𝑀𝐴 = 𝑀 / 𝑘𝐴)
4140eleq1d 2275 . . . . . . . . . . . . 13 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝑀 / 𝑘𝐴 ∈ ℂ))
4239, 41rspc 2872 . . . . . . . . . . . 12 (𝑀𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → 𝑀 / 𝑘𝐴 ∈ ℂ))
4337, 42mpan9 281 . . . . . . . . . . 11 ((𝜑𝑀𝑍) → 𝑀 / 𝑘𝐴 ∈ ℂ)
4435, 43sylan2 286 . . . . . . . . . 10 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘𝐴 ∈ ℂ)
4544abscld 11536 . . . . . . . . 9 ((𝜑𝑀 ∈ ℤ) → (abs‘𝑀 / 𝑘𝐴) ∈ ℝ)
4645recnd 8108 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → (abs‘𝑀 / 𝑘𝐴) ∈ ℂ)
4729, 46eqeltrd 2283 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘(abs‘𝐴) ∈ ℂ)
48 prodsns 11958 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 / 𝑘(abs‘𝐴) ∈ ℂ) → ∏𝑘 ∈ {𝑀} (abs‘𝐴) = 𝑀 / 𝑘(abs‘𝐴))
4933, 47, 48syl2anc 411 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ {𝑀} (abs‘𝐴) = 𝑀 / 𝑘(abs‘𝐴))
5032, 49eqtrd 2239 . . . . 5 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴) = 𝑀 / 𝑘(abs‘𝐴))
5130prodeq1d 11919 . . . . . . . 8 (𝑀 ∈ ℤ → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = ∏𝑘 ∈ {𝑀}𝐴)
5251adantl 277 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = ∏𝑘 ∈ {𝑀}𝐴)
53 prodsns 11958 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑀 / 𝑘𝐴 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝑀 / 𝑘𝐴)
5433, 44, 53syl2anc 411 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝑀 / 𝑘𝐴)
5552, 54eqtrd 2239 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = 𝑀 / 𝑘𝐴)
5655fveq2d 5587 . . . . 5 ((𝜑𝑀 ∈ ℤ) → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = (abs‘𝑀 / 𝑘𝐴))
5729, 50, 563eqtr4rd 2250 . . . 4 ((𝜑𝑀 ∈ ℤ) → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))
5857expcom 116 . . 3 (𝑀 ∈ ℤ → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴)))
59 simp3 1002 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴))
60 peano2uz 9711 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ (ℤ𝑀))
61 csbfv2g 5622 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (ℤ𝑀) → (𝑛 + 1) / 𝑘(abs‘𝐴) = (abs‘(𝑛 + 1) / 𝑘𝐴))
6260, 61syl 14 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) / 𝑘(abs‘𝐴) = (abs‘(𝑛 + 1) / 𝑘𝐴))
6362eqcomd 2212 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → (abs‘(𝑛 + 1) / 𝑘𝐴) = (𝑛 + 1) / 𝑘(abs‘𝐴))
64633ad2ant2 1022 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘(𝑛 + 1) / 𝑘𝐴) = (𝑛 + 1) / 𝑘(abs‘𝐴))
6559, 64oveq12d 5969 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · (𝑛 + 1) / 𝑘(abs‘𝐴)))
66 simpr 110 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
67 elfzuz 10150 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...(𝑛 + 1)) → 𝑘 ∈ (ℤ𝑀))
6867, 2eleqtrrdi 2300 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...(𝑛 + 1)) → 𝑘𝑍)
6968, 36sylan2 286 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀...(𝑛 + 1))) → 𝐴 ∈ ℂ)
7069adantlr 477 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → 𝐴 ∈ ℂ)
7166, 70fprodp1s 11957 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴 = (∏𝑘 ∈ (𝑀...𝑛)𝐴 · (𝑛 + 1) / 𝑘𝐴))
7271fveq2d 5587 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = (abs‘(∏𝑘 ∈ (𝑀...𝑛)𝐴 · (𝑛 + 1) / 𝑘𝐴)))
73 eluzel2 9660 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
7473adantl 277 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑀 ∈ ℤ)
75 eluzelz 9664 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
7675adantl 277 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℤ)
7774, 76fzfigd 10583 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑀...𝑛) ∈ Fin)
78 elfzuz 10150 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
7978, 2eleqtrrdi 2300 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
8079, 36sylan2 286 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀...𝑛)) → 𝐴 ∈ ℂ)
8180adantlr 477 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐴 ∈ ℂ)
8277, 81fprodcl 11962 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∏𝑘 ∈ (𝑀...𝑛)𝐴 ∈ ℂ)
8360, 2eleqtrrdi 2300 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ 𝑍)
84 nfcsb1v 3127 . . . . . . . . . . . . . 14 𝑘(𝑛 + 1) / 𝑘𝐴
8584nfel1 2360 . . . . . . . . . . . . 13 𝑘(𝑛 + 1) / 𝑘𝐴 ∈ ℂ
86 csbeq1a 3103 . . . . . . . . . . . . . 14 (𝑘 = (𝑛 + 1) → 𝐴 = (𝑛 + 1) / 𝑘𝐴)
8786eleq1d 2275 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → (𝐴 ∈ ℂ ↔ (𝑛 + 1) / 𝑘𝐴 ∈ ℂ))
8885, 87rspc 2872 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ 𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ))
8937, 88mpan9 281 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ)
9083, 89sylan2 286 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ)
9182, 90absmuld 11549 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (abs‘(∏𝑘 ∈ (𝑀...𝑛)𝐴 · (𝑛 + 1) / 𝑘𝐴)) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)))
9272, 91eqtrd 2239 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)))
93923adant3 1020 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘(𝑛 + 1) / 𝑘𝐴)))
9470abscld 11536 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → (abs‘𝐴) ∈ ℝ)
9594recnd 8108 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → (abs‘𝐴) ∈ ℂ)
9666, 95fprodp1s 11957 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · (𝑛 + 1) / 𝑘(abs‘𝐴)))
97963adant3 1020 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · (𝑛 + 1) / 𝑘(abs‘𝐴)))
9865, 93, 973eqtr4d 2249 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))
99983exp 1205 . . . . 5 (𝜑 → (𝑛 ∈ (ℤ𝑀) → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
10099com12 30 . . . 4 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
101100a2d 26 . . 3 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))))
1029, 15, 21, 27, 58, 101uzind4 9716 . 2 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴)))
1033, 102mpcom 36 1 (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wral 2485  csb 3094  {csn 3634  cfv 5276  (class class class)co 5951  cc 7930  1c1 7933   + caddc 7935   · cmul 7937  cz 9379  cuz 9655  ...cfz 10137  abscabs 11352  cprod 11905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-proddc 11906
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator