| Step | Hyp | Ref
 | Expression | 
| 1 |   | fprodabs.2 | 
. . 3
⊢ (𝜑 → 𝑁 ∈ 𝑍) | 
| 2 |   | fprodabs.1 | 
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 3 | 1, 2 | eleqtrdi 2289 | 
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 4 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑎 = 𝑀 → (𝑀...𝑎) = (𝑀...𝑀)) | 
| 5 | 4 | prodeq1d 11729 | 
. . . . . 6
⊢ (𝑎 = 𝑀 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑀)𝐴) | 
| 6 | 5 | fveq2d 5562 | 
. . . . 5
⊢ (𝑎 = 𝑀 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴)) | 
| 7 | 4 | prodeq1d 11729 | 
. . . . 5
⊢ (𝑎 = 𝑀 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴)) | 
| 8 | 6, 7 | eqeq12d 2211 | 
. . . 4
⊢ (𝑎 = 𝑀 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))) | 
| 9 | 8 | imbi2d 230 | 
. . 3
⊢ (𝑎 = 𝑀 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴)))) | 
| 10 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑎 = 𝑛 → (𝑀...𝑎) = (𝑀...𝑛)) | 
| 11 | 10 | prodeq1d 11729 | 
. . . . . 6
⊢ (𝑎 = 𝑛 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑛)𝐴) | 
| 12 | 11 | fveq2d 5562 | 
. . . . 5
⊢ (𝑎 = 𝑛 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴)) | 
| 13 | 10 | prodeq1d 11729 | 
. . . . 5
⊢ (𝑎 = 𝑛 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) | 
| 14 | 12, 13 | eqeq12d 2211 | 
. . . 4
⊢ (𝑎 = 𝑛 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴))) | 
| 15 | 14 | imbi2d 230 | 
. . 3
⊢ (𝑎 = 𝑛 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)))) | 
| 16 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑎 = (𝑛 + 1) → (𝑀...𝑎) = (𝑀...(𝑛 + 1))) | 
| 17 | 16 | prodeq1d 11729 | 
. . . . . 6
⊢ (𝑎 = (𝑛 + 1) → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) | 
| 18 | 17 | fveq2d 5562 | 
. . . . 5
⊢ (𝑎 = (𝑛 + 1) → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴)) | 
| 19 | 16 | prodeq1d 11729 | 
. . . . 5
⊢ (𝑎 = (𝑛 + 1) → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴)) | 
| 20 | 18, 19 | eqeq12d 2211 | 
. . . 4
⊢ (𝑎 = (𝑛 + 1) → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴))) | 
| 21 | 20 | imbi2d 230 | 
. . 3
⊢ (𝑎 = (𝑛 + 1) → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴)))) | 
| 22 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑎 = 𝑁 → (𝑀...𝑎) = (𝑀...𝑁)) | 
| 23 | 22 | prodeq1d 11729 | 
. . . . . 6
⊢ (𝑎 = 𝑁 → ∏𝑘 ∈ (𝑀...𝑎)𝐴 = ∏𝑘 ∈ (𝑀...𝑁)𝐴) | 
| 24 | 23 | fveq2d 5562 | 
. . . . 5
⊢ (𝑎 = 𝑁 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴)) | 
| 25 | 22 | prodeq1d 11729 | 
. . . . 5
⊢ (𝑎 = 𝑁 → ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴)) | 
| 26 | 24, 25 | eqeq12d 2211 | 
. . . 4
⊢ (𝑎 = 𝑁 → ((abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴) ↔ (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))) | 
| 27 | 26 | imbi2d 230 | 
. . 3
⊢ (𝑎 = 𝑁 → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑎)𝐴) = ∏𝑘 ∈ (𝑀...𝑎)(abs‘𝐴)) ↔ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴)))) | 
| 28 |   | csbfv2g 5597 | 
. . . . . 6
⊢ (𝑀 ∈ ℤ →
⦋𝑀 / 𝑘⦌(abs‘𝐴) =
(abs‘⦋𝑀
/ 𝑘⦌𝐴)) | 
| 29 | 28 | adantl 277 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ⦋𝑀 / 𝑘⦌(abs‘𝐴) = (abs‘⦋𝑀 / 𝑘⦌𝐴)) | 
| 30 |   | fzsn 10141 | 
. . . . . . . 8
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | 
| 31 | 30 | adantl 277 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → (𝑀...𝑀) = {𝑀}) | 
| 32 | 31 | prodeq1d 11729 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴) = ∏𝑘 ∈ {𝑀} (abs‘𝐴)) | 
| 33 |   | simpr 110 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) | 
| 34 |   | uzid 9615 | 
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) | 
| 35 | 34, 2 | eleqtrrdi 2290 | 
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℤ → 𝑀 ∈ 𝑍) | 
| 36 |   | fprodabs.3 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | 
| 37 | 36 | ralrimiva 2570 | 
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ) | 
| 38 |   | nfcsb1v 3117 | 
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑀 / 𝑘⦌𝐴 | 
| 39 | 38 | nfel1 2350 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ | 
| 40 |   | csbeq1a 3093 | 
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑀 → 𝐴 = ⦋𝑀 / 𝑘⦌𝐴) | 
| 41 | 40 | eleq1d 2265 | 
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ)) | 
| 42 | 39, 41 | rspc 2862 | 
. . . . . . . . . . . 12
⊢ (𝑀 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ)) | 
| 43 | 37, 42 | mpan9 281 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑍) → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) | 
| 44 | 35, 43 | sylan2 286 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) | 
| 45 | 44 | abscld 11346 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) →
(abs‘⦋𝑀
/ 𝑘⦌𝐴) ∈
ℝ) | 
| 46 | 45 | recnd 8055 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) →
(abs‘⦋𝑀
/ 𝑘⦌𝐴) ∈
ℂ) | 
| 47 | 29, 46 | eqeltrd 2273 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ⦋𝑀 / 𝑘⦌(abs‘𝐴) ∈ ℂ) | 
| 48 |   | prodsns 11768 | 
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧
⦋𝑀 / 𝑘⦌(abs‘𝐴) ∈ ℂ) →
∏𝑘 ∈ {𝑀} (abs‘𝐴) = ⦋𝑀 / 𝑘⦌(abs‘𝐴)) | 
| 49 | 33, 47, 48 | syl2anc 411 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ∏𝑘 ∈ {𝑀} (abs‘𝐴) = ⦋𝑀 / 𝑘⦌(abs‘𝐴)) | 
| 50 | 32, 49 | eqtrd 2229 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴) = ⦋𝑀 / 𝑘⦌(abs‘𝐴)) | 
| 51 | 30 | prodeq1d 11729 | 
. . . . . . . 8
⊢ (𝑀 ∈ ℤ →
∏𝑘 ∈ (𝑀...𝑀)𝐴 = ∏𝑘 ∈ {𝑀}𝐴) | 
| 52 | 51 | adantl 277 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = ∏𝑘 ∈ {𝑀}𝐴) | 
| 53 |   | prodsns 11768 | 
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧
⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = ⦋𝑀 / 𝑘⦌𝐴) | 
| 54 | 33, 44, 53 | syl2anc 411 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ∏𝑘 ∈ {𝑀}𝐴 = ⦋𝑀 / 𝑘⦌𝐴) | 
| 55 | 52, 54 | eqtrd 2229 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ∏𝑘 ∈ (𝑀...𝑀)𝐴 = ⦋𝑀 / 𝑘⦌𝐴) | 
| 56 | 55 | fveq2d 5562 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) →
(abs‘∏𝑘 ∈
(𝑀...𝑀)𝐴) = (abs‘⦋𝑀 / 𝑘⦌𝐴)) | 
| 57 | 29, 50, 56 | 3eqtr4rd 2240 | 
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) →
(abs‘∏𝑘 ∈
(𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴)) | 
| 58 | 57 | expcom 116 | 
. . 3
⊢ (𝑀 ∈ ℤ → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑀)𝐴) = ∏𝑘 ∈ (𝑀...𝑀)(abs‘𝐴))) | 
| 59 |   | simp3 1001 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) | 
| 60 |   | peano2uz 9657 | 
. . . . . . . . . . 11
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝑛 + 1) ∈
(ℤ≥‘𝑀)) | 
| 61 |   | csbfv2g 5597 | 
. . . . . . . . . . 11
⊢ ((𝑛 + 1) ∈
(ℤ≥‘𝑀) → ⦋(𝑛 + 1) / 𝑘⦌(abs‘𝐴) = (abs‘⦋(𝑛 + 1) / 𝑘⦌𝐴)) | 
| 62 | 60, 61 | syl 14 | 
. . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ⦋(𝑛 + 1) / 𝑘⦌(abs‘𝐴) = (abs‘⦋(𝑛 + 1) / 𝑘⦌𝐴)) | 
| 63 | 62 | eqcomd 2202 | 
. . . . . . . . 9
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (abs‘⦋(𝑛 + 1) / 𝑘⦌𝐴) = ⦋(𝑛 + 1) / 𝑘⦌(abs‘𝐴)) | 
| 64 | 63 | 3ad2ant2 1021 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘⦋(𝑛 + 1) / 𝑘⦌𝐴) = ⦋(𝑛 + 1) / 𝑘⦌(abs‘𝐴)) | 
| 65 | 59, 64 | oveq12d 5940 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘⦋(𝑛 + 1) / 𝑘⦌𝐴)) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · ⦋(𝑛 + 1) / 𝑘⦌(abs‘𝐴))) | 
| 66 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ (ℤ≥‘𝑀)) | 
| 67 |   | elfzuz 10096 | 
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝑀...(𝑛 + 1)) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 68 | 67, 2 | eleqtrrdi 2290 | 
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (𝑀...(𝑛 + 1)) → 𝑘 ∈ 𝑍) | 
| 69 | 68, 36 | sylan2 286 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → 𝐴 ∈ ℂ) | 
| 70 | 69 | adantlr 477 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → 𝐴 ∈ ℂ) | 
| 71 | 66, 70 | fprodp1s 11767 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴 = (∏𝑘 ∈ (𝑀...𝑛)𝐴 · ⦋(𝑛 + 1) / 𝑘⦌𝐴)) | 
| 72 | 71 | fveq2d 5562 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) →
(abs‘∏𝑘 ∈
(𝑀...(𝑛 + 1))𝐴) = (abs‘(∏𝑘 ∈ (𝑀...𝑛)𝐴 · ⦋(𝑛 + 1) / 𝑘⦌𝐴))) | 
| 73 |   | eluzel2 9606 | 
. . . . . . . . . . . . 13
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | 
| 74 | 73 | adantl 277 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ ℤ) | 
| 75 |   | eluzelz 9610 | 
. . . . . . . . . . . . 13
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → 𝑛 ∈ ℤ) | 
| 76 | 75 | adantl 277 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℤ) | 
| 77 | 74, 76 | fzfigd 10523 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝑀...𝑛) ∈ Fin) | 
| 78 |   | elfzuz 10096 | 
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ≥‘𝑀)) | 
| 79 | 78, 2 | eleqtrrdi 2290 | 
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ 𝑍) | 
| 80 | 79, 36 | sylan2 286 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐴 ∈ ℂ) | 
| 81 | 80 | adantlr 477 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝐴 ∈ ℂ) | 
| 82 | 77, 81 | fprodcl 11772 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ∏𝑘 ∈ (𝑀...𝑛)𝐴 ∈ ℂ) | 
| 83 | 60, 2 | eleqtrrdi 2290 | 
. . . . . . . . . . 11
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝑛 + 1) ∈ 𝑍) | 
| 84 |   | nfcsb1v 3117 | 
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(𝑛 + 1) / 𝑘⦌𝐴 | 
| 85 | 84 | nfel1 2350 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋(𝑛 + 1) / 𝑘⦌𝐴 ∈ ℂ | 
| 86 |   | csbeq1a 3093 | 
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑛 + 1) → 𝐴 = ⦋(𝑛 + 1) / 𝑘⦌𝐴) | 
| 87 | 86 | eleq1d 2265 | 
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑛 + 1) → (𝐴 ∈ ℂ ↔ ⦋(𝑛 + 1) / 𝑘⦌𝐴 ∈ ℂ)) | 
| 88 | 85, 87 | rspc 2862 | 
. . . . . . . . . . . 12
⊢ ((𝑛 + 1) ∈ 𝑍 → (∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋(𝑛 + 1) / 𝑘⦌𝐴 ∈ ℂ)) | 
| 89 | 37, 88 | mpan9 281 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ⦋(𝑛 + 1) / 𝑘⦌𝐴 ∈ ℂ) | 
| 90 | 83, 89 | sylan2 286 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ⦋(𝑛 + 1) / 𝑘⦌𝐴 ∈ ℂ) | 
| 91 | 82, 90 | absmuld 11359 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) →
(abs‘(∏𝑘 ∈
(𝑀...𝑛)𝐴 · ⦋(𝑛 + 1) / 𝑘⦌𝐴)) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘⦋(𝑛 + 1) / 𝑘⦌𝐴))) | 
| 92 | 72, 91 | eqtrd 2229 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) →
(abs‘∏𝑘 ∈
(𝑀...(𝑛 + 1))𝐴) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘⦋(𝑛 + 1) / 𝑘⦌𝐴))) | 
| 93 | 92 | 3adant3 1019 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) · (abs‘⦋(𝑛 + 1) / 𝑘⦌𝐴))) | 
| 94 | 70 | abscld 11346 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → (abs‘𝐴) ∈ ℝ) | 
| 95 | 94 | recnd 8055 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ (𝑀...(𝑛 + 1))) → (abs‘𝐴) ∈ ℂ) | 
| 96 | 66, 95 | fprodp1s 11767 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · ⦋(𝑛 + 1) / 𝑘⦌(abs‘𝐴))) | 
| 97 | 96 | 3adant3 1019 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴) = (∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) · ⦋(𝑛 + 1) / 𝑘⦌(abs‘𝐴))) | 
| 98 | 65, 93, 97 | 3eqtr4d 2239 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀) ∧ (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴)) | 
| 99 | 98 | 3exp 1204 | 
. . . . 5
⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝑀) →
((abs‘∏𝑘 ∈
(𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴)))) | 
| 100 | 99 | com12 30 | 
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝜑 → ((abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴) → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴)))) | 
| 101 | 100 | a2d 26 | 
. . 3
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑛)𝐴) = ∏𝑘 ∈ (𝑀...𝑛)(abs‘𝐴)) → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...(𝑛 + 1))𝐴) = ∏𝑘 ∈ (𝑀...(𝑛 + 1))(abs‘𝐴)))) | 
| 102 | 9, 15, 21, 27, 58, 101 | uzind4 9662 | 
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴))) | 
| 103 | 3, 102 | mpcom 36 | 
1
⊢ (𝜑 → (abs‘∏𝑘 ∈ (𝑀...𝑁)𝐴) = ∏𝑘 ∈ (𝑀...𝑁)(abs‘𝐴)) |