Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fveq1d | GIF version |
Description: Equality deduction for function value. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
fveq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
fveq1d | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | fveq1 5484 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ‘cfv 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 |
This theorem is referenced by: fveq12d 5492 funssfv 5511 csbfv2g 5522 fvco4 5557 fvmptd 5566 fvmpt2d 5571 mpteqb 5575 fvmptt 5576 fmptco 5650 fvunsng 5678 fvsng 5680 fsnunfv 5685 f1ocnvfv1 5744 f1ocnvfv2 5745 fcof1 5750 fcofo 5751 ofvalg 6058 offval2 6064 ofrfval2 6065 caofinvl 6071 tfrlemi1 6296 rdg0g 6352 freceq1 6356 oav 6418 omv 6419 oeiv 6420 mapxpen 6810 xpmapenlem 6811 nninfisollemne 7091 nninfisol 7093 exmidomni 7102 cc3 7205 fseq1p1m1 10025 seqeq3 10381 seq3f1olemqsum 10431 seq3f1olemstep 10432 seq3f1olemp 10433 seq3id 10439 seq3z 10442 exp3val 10453 bcval5 10672 bcn2 10673 seq3coll 10751 shftcan1 10772 shftcan2 10773 shftvalg 10774 shftval4g 10775 climshft2 11243 sumeq2 11296 summodc 11320 zsumdc 11321 fsum3 11324 isumz 11326 fisumss 11329 fsum3cvg2 11331 isumsplit 11428 prodeq2w 11493 prodeq2 11494 prodmodc 11515 zproddc 11516 fprodseq 11520 prod1dc 11523 fprodssdc 11527 odzval 12169 1arithlem2 12290 fvsetsid 12424 setsslid 12440 setsslnid 12441 ntrval 12710 clsval 12711 neival 12743 cnpval 12798 txmetcnp 13118 metcnpd 13120 limccl 13228 ellimc3apf 13229 cnplimclemr 13238 limccnp2cntop 13246 dvfvalap 13250 dvfre 13274 lgsval4 13521 lgsmod 13527 peano4nninf 13846 |
Copyright terms: Public domain | W3C validator |