Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fveq1d | GIF version |
Description: Equality deduction for function value. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
fveq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
fveq1d | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | fveq1 5469 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ‘cfv 5172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-uni 3775 df-br 3968 df-iota 5137 df-fv 5180 |
This theorem is referenced by: fveq12d 5477 funssfv 5496 csbfv2g 5507 fvco4 5542 fvmptd 5551 fvmpt2d 5556 mpteqb 5560 fvmptt 5561 fmptco 5635 fvunsng 5663 fvsng 5665 fsnunfv 5670 f1ocnvfv1 5729 f1ocnvfv2 5730 fcof1 5735 fcofo 5736 ofvalg 6043 offval2 6049 ofrfval2 6050 caofinvl 6056 tfrlemi1 6281 rdg0g 6337 freceq1 6341 oav 6403 omv 6404 oeiv 6405 mapxpen 6795 xpmapenlem 6796 nninfisollemne 7076 nninfisol 7078 exmidomni 7087 cc3 7190 fseq1p1m1 10002 seqeq3 10358 seq3f1olemqsum 10408 seq3f1olemstep 10409 seq3f1olemp 10410 seq3id 10416 seq3z 10419 exp3val 10430 bcval5 10648 bcn2 10649 seq3coll 10724 shftcan1 10745 shftcan2 10746 shftvalg 10747 shftval4g 10748 climshft2 11214 sumeq2 11267 summodc 11291 zsumdc 11292 fsum3 11295 isumz 11297 fisumss 11300 fsum3cvg2 11302 isumsplit 11399 prodeq2w 11464 prodeq2 11465 prodmodc 11486 zproddc 11487 fprodseq 11491 prod1dc 11494 fprodssdc 11498 odzval 12131 fvsetsid 12294 setsslid 12310 setsslnid 12311 ntrval 12580 clsval 12581 neival 12613 cnpval 12668 txmetcnp 12988 metcnpd 12990 limccl 13098 ellimc3apf 13099 cnplimclemr 13108 limccnp2cntop 13116 dvfvalap 13120 dvfre 13144 peano4nninf 13649 |
Copyright terms: Public domain | W3C validator |