![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fveq1d | GIF version |
Description: Equality deduction for function value. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
fveq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
fveq1d | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | fveq1 5554 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 |
This theorem is referenced by: fveq12d 5562 funssfv 5581 fv2prc 5592 csbfv2g 5594 fvco4 5630 fvmptd 5639 fvmpt2d 5645 mpteqb 5649 fvmptt 5650 fnmptfvd 5663 fmptco 5725 fvunsng 5753 fvsng 5755 fsnunfv 5760 f1ocnvfv1 5821 f1ocnvfv2 5822 fcof1 5827 fcofo 5828 ofvalg 6142 offval2 6148 ofrfval2 6149 caofinvl 6157 tfrlemi1 6387 rdg0g 6443 freceq1 6447 oav 6509 omv 6510 oeiv 6511 pw2f1odclem 6892 mapxpen 6906 xpmapenlem 6907 nninfisollemne 7192 nninfisol 7194 exmidomni 7203 nninfwlpoimlemginf 7237 cc3 7330 fseq1p1m1 10163 seqeq3 10526 seq3f1olemqsum 10587 seq3f1olemstep 10588 seq3f1olemp 10589 seqf1oglem2 10594 seqf1og 10595 seq3id 10599 seq3z 10602 exp3val 10615 bcval5 10837 bcn2 10838 seq3coll 10916 shftcan1 10981 shftcan2 10982 shftvalg 10983 shftval4g 10984 climshft2 11452 sumeq2 11505 summodc 11529 zsumdc 11530 fsum3 11533 isumz 11535 fisumss 11538 fsum3cvg2 11540 isumsplit 11637 prodeq2w 11702 prodeq2 11703 prodmodc 11724 zproddc 11725 fprodseq 11729 prod1dc 11732 fprodssdc 11736 nninfctlemfo 12180 odzval 12382 1arithlem2 12505 fvsetsid 12655 setsslid 12672 setsslnid 12673 prdsex 12883 imasival 12892 imasbas 12893 imasplusg 12894 imasmulr 12895 igsumvalx 12975 gsumfzval 12977 gsumpropd 12978 gsumress 12981 gsumval2 12983 grpinvval 13118 grpsubfvalg 13120 grpsubpropdg 13179 grpsubpropd2 13180 mulgfvalg 13194 mulgpropdg 13237 submmulg 13239 subgmulg 13261 releqgg 13293 eqgex 13294 eqgfval 13295 gsumfzmptfidmadd 13412 unitinvcl 13622 unitinvinv 13623 unitlinv 13625 unitrinv 13626 unitnegcl 13629 dvrfvald 13632 dvrvald 13633 rdivmuldivd 13643 subrgugrp 13739 lspval 13889 ixpsnbasval 13965 lidlnegcl 13984 rspcl 13990 rspssid 13991 rspssp 13993 rspsn 14033 zrhmulg 14119 znzrhval 14146 ntrval 14289 clsval 14290 neival 14322 cnpval 14377 txmetcnp 14697 metcnpd 14699 limccl 14838 ellimc3apf 14839 cnplimclemr 14848 limccnp2cntop 14856 dvfvalap 14860 dvfre 14889 plyrecj 14941 lgsval4 15177 lgsmod 15183 peano4nninf 15566 |
Copyright terms: Public domain | W3C validator |