Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fveq1d | GIF version |
Description: Equality deduction for function value. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
fveq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
fveq1d | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | fveq1 5495 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 |
This theorem is referenced by: fveq12d 5503 funssfv 5522 csbfv2g 5533 fvco4 5568 fvmptd 5577 fvmpt2d 5582 mpteqb 5586 fvmptt 5587 fnmptfvd 5600 fmptco 5662 fvunsng 5690 fvsng 5692 fsnunfv 5697 f1ocnvfv1 5756 f1ocnvfv2 5757 fcof1 5762 fcofo 5763 ofvalg 6070 offval2 6076 ofrfval2 6077 caofinvl 6083 tfrlemi1 6311 rdg0g 6367 freceq1 6371 oav 6433 omv 6434 oeiv 6435 mapxpen 6826 xpmapenlem 6827 nninfisollemne 7107 nninfisol 7109 exmidomni 7118 nninfwlpoimlemginf 7152 cc3 7230 fseq1p1m1 10050 seqeq3 10406 seq3f1olemqsum 10456 seq3f1olemstep 10457 seq3f1olemp 10458 seq3id 10464 seq3z 10467 exp3val 10478 bcval5 10697 bcn2 10698 seq3coll 10777 shftcan1 10798 shftcan2 10799 shftvalg 10800 shftval4g 10801 climshft2 11269 sumeq2 11322 summodc 11346 zsumdc 11347 fsum3 11350 isumz 11352 fisumss 11355 fsum3cvg2 11357 isumsplit 11454 prodeq2w 11519 prodeq2 11520 prodmodc 11541 zproddc 11542 fprodseq 11546 prod1dc 11549 fprodssdc 11553 odzval 12195 1arithlem2 12316 fvsetsid 12450 setsslid 12466 setsslnid 12467 grpinvval 12746 grpsubfvalg 12748 ntrval 12904 clsval 12905 neival 12937 cnpval 12992 txmetcnp 13312 metcnpd 13314 limccl 13422 ellimc3apf 13423 cnplimclemr 13432 limccnp2cntop 13440 dvfvalap 13444 dvfre 13468 lgsval4 13715 lgsmod 13721 peano4nninf 14039 |
Copyright terms: Public domain | W3C validator |