ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspccva GIF version

Theorem rspccva 2875
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
rspcv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspccva ((∀𝑥𝐵 𝜑𝐴𝐵) → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rspccva
StepHypRef Expression
1 rspcv.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21rspcv 2872 . 2 (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))
32impcom 125 1 ((∀𝑥𝐵 𝜑𝐴𝐵) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wral 2483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773
This theorem is referenced by:  disjne  3513  seex  4381  fconstfvm  5801  caofid0l  6184  caofid0r  6185  caofid1  6186  caofid2  6187  fvixp  6789  ordiso2  7136  eqord1  8555  eqord2  8556  seq3caopr2  10636  seqcaopr2g  10637  bccl  10910  2clim  11554  isummulc2  11679  telfsumo2  11720  fsumparts  11723  isumshft  11743  mertenslem2  11789  mertensabs  11790  dvdsprime  12386  mgmlrid  13153  grpinvalem  13159  grpinvex  13284  issubg2m  13467  issubg4m  13471  nmzbi  13487  cnima  14634  dich0  15066  2lgslem1a  15507  dceqnconst  15932  dcapnconst  15933
  Copyright terms: Public domain W3C validator