| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspccva | GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspccva | ⊢ ((∀𝑥 ∈ 𝐵 𝜑 ∧ 𝐴 ∈ 𝐵) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | rspcv 2903 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| 3 | 2 | impcom 125 | 1 ⊢ ((∀𝑥 ∈ 𝐵 𝜑 ∧ 𝐴 ∈ 𝐵) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 |
| This theorem is referenced by: disjne 3545 seex 4425 fconstfvm 5856 caofid0l 6243 caofid0r 6244 caofid1 6245 caofid2 6246 fvixp 6848 ordiso2 7198 eqord1 8626 eqord2 8627 seq3caopr2 10710 seqcaopr2g 10711 bccl 10984 2clim 11807 isummulc2 11932 telfsumo2 11973 fsumparts 11976 isumshft 11996 mertenslem2 12042 mertensabs 12043 dvdsprime 12639 mgmlrid 13407 grpinvalem 13413 grpinvex 13538 issubg2m 13721 issubg4m 13725 nmzbi 13741 cnima 14888 dich0 15320 2lgslem1a 15761 dceqnconst 16387 dcapnconst 16388 |
| Copyright terms: Public domain | W3C validator |