ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspccva GIF version

Theorem rspccva 2906
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
rspcv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspccva ((∀𝑥𝐵 𝜑𝐴𝐵) → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rspccva
StepHypRef Expression
1 rspcv.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21rspcv 2903 . 2 (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))
32impcom 125 1 ((∀𝑥𝐵 𝜑𝐴𝐵) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801
This theorem is referenced by:  disjne  3545  seex  4425  fconstfvm  5856  caofid0l  6243  caofid0r  6244  caofid1  6245  caofid2  6246  fvixp  6848  ordiso2  7198  eqord1  8626  eqord2  8627  seq3caopr2  10710  seqcaopr2g  10711  bccl  10984  2clim  11807  isummulc2  11932  telfsumo2  11973  fsumparts  11976  isumshft  11996  mertenslem2  12042  mertensabs  12043  dvdsprime  12639  mgmlrid  13407  grpinvalem  13413  grpinvex  13538  issubg2m  13721  issubg4m  13725  nmzbi  13741  cnima  14888  dich0  15320  2lgslem1a  15761  dceqnconst  16387  dcapnconst  16388
  Copyright terms: Public domain W3C validator