Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspccva | GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
rspcv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspccva | ⊢ ((∀𝑥 ∈ 𝐵 𝜑 ∧ 𝐴 ∈ 𝐵) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | rspcv 2830 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
3 | 2 | impcom 124 | 1 ⊢ ((∀𝑥 ∈ 𝐵 𝜑 ∧ 𝐴 ∈ 𝐵) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 |
This theorem is referenced by: disjne 3468 seex 4320 fconstfvm 5714 fvixp 6681 ordiso2 7012 eqord1 8402 eqord2 8403 seq3caopr2 10438 bccl 10701 2clim 11264 isummulc2 11389 telfsumo2 11430 fsumparts 11433 isumshft 11453 mertenslem2 11499 mertensabs 11500 dvdsprime 12076 mgmlrid 12633 grprinvlem 12639 grpinvex 12718 cnima 13014 dceqnconst 14091 dcapnconst 14092 |
Copyright terms: Public domain | W3C validator |