| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecqusaddd | GIF version | ||
| Description: Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025.) |
| Ref | Expression |
|---|---|
| ecqusaddd.i | ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) |
| ecqusaddd.b | ⊢ 𝐵 = (Base‘𝑅) |
| ecqusaddd.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| ecqusaddd.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| Ref | Expression |
|---|---|
| ecqusaddd | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴(+g‘𝑅)𝐶)] ∼ = ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecqusaddd.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) | |
| 2 | 1 | anim1i 340 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (𝐼 ∈ (NrmSGrp‘𝑅) ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵))) |
| 3 | 3anass 1006 | . . . . 5 ⊢ ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ↔ (𝐼 ∈ (NrmSGrp‘𝑅) ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵))) | |
| 4 | 2, 3 | sylibr 134 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) |
| 5 | ecqusaddd.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 6 | ecqusaddd.g | . . . . . . 7 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 7 | 6 | oveq2i 6012 | . . . . . 6 ⊢ (𝑅 /s ∼ ) = (𝑅 /s (𝑅 ~QG 𝐼)) |
| 8 | 5, 7 | eqtri 2250 | . . . . 5 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
| 9 | ecqusaddd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 10 | eqid 2229 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 11 | eqid 2229 | . . . . 5 ⊢ (+g‘𝑄) = (+g‘𝑄) | |
| 12 | 8, 9, 10, 11 | qusadd 13771 | . . . 4 ⊢ ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) → ([𝐴](𝑅 ~QG 𝐼)(+g‘𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴(+g‘𝑅)𝐶)](𝑅 ~QG 𝐼)) |
| 13 | 4, 12 | syl 14 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴](𝑅 ~QG 𝐼)(+g‘𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴(+g‘𝑅)𝐶)](𝑅 ~QG 𝐼)) |
| 14 | 6 | eceq2i 6718 | . . . 4 ⊢ [𝐴] ∼ = [𝐴](𝑅 ~QG 𝐼) |
| 15 | 6 | eceq2i 6718 | . . . 4 ⊢ [𝐶] ∼ = [𝐶](𝑅 ~QG 𝐼) |
| 16 | 14, 15 | oveq12i 6013 | . . 3 ⊢ ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ ) = ([𝐴](𝑅 ~QG 𝐼)(+g‘𝑄)[𝐶](𝑅 ~QG 𝐼)) |
| 17 | 6 | eceq2i 6718 | . . 3 ⊢ [(𝐴(+g‘𝑅)𝐶)] ∼ = [(𝐴(+g‘𝑅)𝐶)](𝑅 ~QG 𝐼) |
| 18 | 13, 16, 17 | 3eqtr4g 2287 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ ) = [(𝐴(+g‘𝑅)𝐶)] ∼ ) |
| 19 | 18 | eqcomd 2235 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴(+g‘𝑅)𝐶)] ∼ = ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ )) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6001 [cec 6678 Basecbs 13032 +gcplusg 13110 /s cqus 13333 NrmSGrpcnsg 13705 ~QG cqg 13706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-er 6680 df-ec 6682 df-qs 6686 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-iress 13040 df-plusg 13123 df-mulr 13124 df-0g 13291 df-iimas 13335 df-qus 13336 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 df-subg 13707 df-nsg 13708 df-eqg 13709 |
| This theorem is referenced by: ecqusaddcl 13776 |
| Copyright terms: Public domain | W3C validator |