![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecqusaddd | GIF version |
Description: Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025.) |
Ref | Expression |
---|---|
ecqusaddd.i | ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) |
ecqusaddd.b | ⊢ 𝐵 = (Base‘𝑅) |
ecqusaddd.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
ecqusaddd.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
Ref | Expression |
---|---|
ecqusaddd | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴(+g‘𝑅)𝐶)] ∼ = ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecqusaddd.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) | |
2 | 1 | anim1i 340 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (𝐼 ∈ (NrmSGrp‘𝑅) ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵))) |
3 | 3anass 984 | . . . . 5 ⊢ ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ↔ (𝐼 ∈ (NrmSGrp‘𝑅) ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵))) | |
4 | 2, 3 | sylibr 134 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) |
5 | ecqusaddd.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
6 | ecqusaddd.g | . . . . . . 7 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
7 | 6 | oveq2i 5930 | . . . . . 6 ⊢ (𝑅 /s ∼ ) = (𝑅 /s (𝑅 ~QG 𝐼)) |
8 | 5, 7 | eqtri 2214 | . . . . 5 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
9 | ecqusaddd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
10 | eqid 2193 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
11 | eqid 2193 | . . . . 5 ⊢ (+g‘𝑄) = (+g‘𝑄) | |
12 | 8, 9, 10, 11 | qusadd 13307 | . . . 4 ⊢ ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) → ([𝐴](𝑅 ~QG 𝐼)(+g‘𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴(+g‘𝑅)𝐶)](𝑅 ~QG 𝐼)) |
13 | 4, 12 | syl 14 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴](𝑅 ~QG 𝐼)(+g‘𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴(+g‘𝑅)𝐶)](𝑅 ~QG 𝐼)) |
14 | 6 | eceq2i 6627 | . . . 4 ⊢ [𝐴] ∼ = [𝐴](𝑅 ~QG 𝐼) |
15 | 6 | eceq2i 6627 | . . . 4 ⊢ [𝐶] ∼ = [𝐶](𝑅 ~QG 𝐼) |
16 | 14, 15 | oveq12i 5931 | . . 3 ⊢ ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ ) = ([𝐴](𝑅 ~QG 𝐼)(+g‘𝑄)[𝐶](𝑅 ~QG 𝐼)) |
17 | 6 | eceq2i 6627 | . . 3 ⊢ [(𝐴(+g‘𝑅)𝐶)] ∼ = [(𝐴(+g‘𝑅)𝐶)](𝑅 ~QG 𝐼) |
18 | 13, 16, 17 | 3eqtr4g 2251 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ ) = [(𝐴(+g‘𝑅)𝐶)] ∼ ) |
19 | 18 | eqcomd 2199 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴(+g‘𝑅)𝐶)] ∼ = ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ‘cfv 5255 (class class class)co 5919 [cec 6587 Basecbs 12621 +gcplusg 12698 /s cqus 12886 NrmSGrpcnsg 13241 ~QG cqg 13242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-tp 3627 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-er 6589 df-ec 6591 df-qs 6595 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-0g 12872 df-iimas 12888 df-qus 12889 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-subg 13243 df-nsg 13244 df-eqg 13245 |
This theorem is referenced by: ecqusaddcl 13312 |
Copyright terms: Public domain | W3C validator |