![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecqusaddd | GIF version |
Description: Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025.) |
Ref | Expression |
---|---|
ecqusaddd.i | ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) |
ecqusaddd.b | ⊢ 𝐵 = (Base‘𝑅) |
ecqusaddd.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
ecqusaddd.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
Ref | Expression |
---|---|
ecqusaddd | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴(+g‘𝑅)𝐶)] ∼ = ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecqusaddd.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) | |
2 | 1 | anim1i 340 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (𝐼 ∈ (NrmSGrp‘𝑅) ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵))) |
3 | 3anass 984 | . . . . 5 ⊢ ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ↔ (𝐼 ∈ (NrmSGrp‘𝑅) ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵))) | |
4 | 2, 3 | sylibr 134 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) |
5 | ecqusaddd.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
6 | ecqusaddd.g | . . . . . . 7 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
7 | 6 | oveq2i 5908 | . . . . . 6 ⊢ (𝑅 /s ∼ ) = (𝑅 /s (𝑅 ~QG 𝐼)) |
8 | 5, 7 | eqtri 2210 | . . . . 5 ⊢ 𝑄 = (𝑅 /s (𝑅 ~QG 𝐼)) |
9 | ecqusaddd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
10 | eqid 2189 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
11 | eqid 2189 | . . . . 5 ⊢ (+g‘𝑄) = (+g‘𝑄) | |
12 | 8, 9, 10, 11 | qusadd 13190 | . . . 4 ⊢ ((𝐼 ∈ (NrmSGrp‘𝑅) ∧ 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) → ([𝐴](𝑅 ~QG 𝐼)(+g‘𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴(+g‘𝑅)𝐶)](𝑅 ~QG 𝐼)) |
13 | 4, 12 | syl 14 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴](𝑅 ~QG 𝐼)(+g‘𝑄)[𝐶](𝑅 ~QG 𝐼)) = [(𝐴(+g‘𝑅)𝐶)](𝑅 ~QG 𝐼)) |
14 | 6 | eceq2i 6598 | . . . 4 ⊢ [𝐴] ∼ = [𝐴](𝑅 ~QG 𝐼) |
15 | 6 | eceq2i 6598 | . . . 4 ⊢ [𝐶] ∼ = [𝐶](𝑅 ~QG 𝐼) |
16 | 14, 15 | oveq12i 5909 | . . 3 ⊢ ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ ) = ([𝐴](𝑅 ~QG 𝐼)(+g‘𝑄)[𝐶](𝑅 ~QG 𝐼)) |
17 | 6 | eceq2i 6598 | . . 3 ⊢ [(𝐴(+g‘𝑅)𝐶)] ∼ = [(𝐴(+g‘𝑅)𝐶)](𝑅 ~QG 𝐼) |
18 | 13, 16, 17 | 3eqtr4g 2247 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ ) = [(𝐴(+g‘𝑅)𝐶)] ∼ ) |
19 | 18 | eqcomd 2195 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴(+g‘𝑅)𝐶)] ∼ = ([𝐴] ∼ (+g‘𝑄)[𝐶] ∼ )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ‘cfv 5235 (class class class)co 5897 [cec 6558 Basecbs 12515 +gcplusg 12592 /s cqus 12780 NrmSGrpcnsg 13124 ~QG cqg 13125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-pre-ltirr 7954 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-tp 3615 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-er 6560 df-ec 6562 df-qs 6566 df-pnf 8025 df-mnf 8026 df-ltxr 8028 df-inn 8951 df-2 9009 df-3 9010 df-ndx 12518 df-slot 12519 df-base 12521 df-sets 12522 df-iress 12523 df-plusg 12605 df-mulr 12606 df-0g 12766 df-iimas 12782 df-qus 12783 df-mgm 12835 df-sgrp 12880 df-mnd 12893 df-grp 12963 df-minusg 12964 df-subg 13126 df-nsg 13127 df-eqg 13128 |
This theorem is referenced by: ecqusaddcl 13195 |
Copyright terms: Public domain | W3C validator |