Step | Hyp | Ref
| Expression |
1 | | eldifsni 3723 |
. . . . . . 7
β’ (π¦ β ((π« π΄ β© Fin) β {β
})
β π¦ β
β
) |
2 | | eldifi 3259 |
. . . . . . . . 9
β’ (π¦ β ((π« π΄ β© Fin) β {β
})
β π¦ β (π«
π΄ β©
Fin)) |
3 | 2 | elin2d 3327 |
. . . . . . . 8
β’ (π¦ β ((π« π΄ β© Fin) β {β
})
β π¦ β
Fin) |
4 | | fin0 6887 |
. . . . . . . 8
β’ (π¦ β Fin β (π¦ β β
β
βπ€ π€ β π¦)) |
5 | 3, 4 | syl 14 |
. . . . . . 7
β’ (π¦ β ((π« π΄ β© Fin) β {β
})
β (π¦ β β
β βπ€ π€ β π¦)) |
6 | 1, 5 | mpbid 147 |
. . . . . 6
β’ (π¦ β ((π« π΄ β© Fin) β {β
})
β βπ€ π€ β π¦) |
7 | | inteximm 4151 |
. . . . . 6
β’
(βπ€ π€ β π¦ β β© π¦ β V) |
8 | 6, 7 | syl 14 |
. . . . 5
β’ (π¦ β ((π« π΄ β© Fin) β {β
})
β β© π¦ β V) |
9 | 8 | rgen 2530 |
. . . 4
β’
βπ¦ β
((π« π΄ β© Fin)
β {β
})β© π¦ β V |
10 | | fifo.1 |
. . . . 5
β’ πΉ = (π¦ β ((π« π΄ β© Fin) β {β
}) β¦ β© π¦) |
11 | 10 | fnmpt 5344 |
. . . 4
β’
(βπ¦ β
((π« π΄ β© Fin)
β {β
})β© π¦ β V β πΉ Fn ((π« π΄ β© Fin) β
{β
})) |
12 | 9, 11 | mp1i 10 |
. . 3
β’ (π΄ β π β πΉ Fn ((π« π΄ β© Fin) β
{β
})) |
13 | | dffn4 5446 |
. . 3
β’ (πΉ Fn ((π« π΄ β© Fin) β {β
})
β πΉ:((π« π΄ β© Fin) β
{β
})βontoβran πΉ) |
14 | 12, 13 | sylib 122 |
. 2
β’ (π΄ β π β πΉ:((π« π΄ β© Fin) β {β
})βontoβran πΉ) |
15 | | elfi2 6973 |
. . . . 5
β’ (π΄ β π β (π₯ β (fiβπ΄) β βπ¦ β ((π« π΄ β© Fin) β {β
})π₯ = β©
π¦)) |
16 | 10 | elrnmpt 4878 |
. . . . . 6
β’ (π₯ β V β (π₯ β ran πΉ β βπ¦ β ((π« π΄ β© Fin) β {β
})π₯ = β©
π¦)) |
17 | 16 | elv 2743 |
. . . . 5
β’ (π₯ β ran πΉ β βπ¦ β ((π« π΄ β© Fin) β {β
})π₯ = β©
π¦) |
18 | 15, 17 | bitr4di 198 |
. . . 4
β’ (π΄ β π β (π₯ β (fiβπ΄) β π₯ β ran πΉ)) |
19 | 18 | eqrdv 2175 |
. . 3
β’ (π΄ β π β (fiβπ΄) = ran πΉ) |
20 | | foeq3 5438 |
. . 3
β’
((fiβπ΄) = ran
πΉ β (πΉ:((π« π΄ β© Fin) β {β
})βontoβ(fiβπ΄) β πΉ:((π« π΄ β© Fin) β {β
})βontoβran πΉ)) |
21 | 19, 20 | syl 14 |
. 2
β’ (π΄ β π β (πΉ:((π« π΄ β© Fin) β {β
})βontoβ(fiβπ΄) β πΉ:((π« π΄ β© Fin) β {β
})βontoβran πΉ)) |
22 | 14, 21 | mpbird 167 |
1
β’ (π΄ β π β πΉ:((π« π΄ β© Fin) β {β
})βontoβ(fiβπ΄)) |