Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fifo | GIF version |
Description: Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
fifo.1 | ⊢ 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑦) |
Ref | Expression |
---|---|
fifo | ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsni 3705 | . . . . . . 7 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅) | |
2 | eldifi 3244 | . . . . . . . . 9 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) | |
3 | 2 | elin2d 3312 | . . . . . . . 8 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ∈ Fin) |
4 | fin0 6851 | . . . . . . . 8 ⊢ (𝑦 ∈ Fin → (𝑦 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝑦)) | |
5 | 3, 4 | syl 14 | . . . . . . 7 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → (𝑦 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝑦)) |
6 | 1, 5 | mpbid 146 | . . . . . 6 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → ∃𝑤 𝑤 ∈ 𝑦) |
7 | inteximm 4128 | . . . . . 6 ⊢ (∃𝑤 𝑤 ∈ 𝑦 → ∩ 𝑦 ∈ V) | |
8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → ∩ 𝑦 ∈ V) |
9 | 8 | rgen 2519 | . . . 4 ⊢ ∀𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})∩ 𝑦 ∈ V |
10 | fifo.1 | . . . . 5 ⊢ 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑦) | |
11 | 10 | fnmpt 5314 | . . . 4 ⊢ (∀𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})∩ 𝑦 ∈ V → 𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅})) |
12 | 9, 11 | mp1i 10 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅})) |
13 | dffn4 5416 | . . 3 ⊢ (𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹) | |
14 | 12, 13 | sylib 121 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹) |
15 | elfi2 6937 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = ∩ 𝑦)) | |
16 | 10 | elrnmpt 4853 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = ∩ 𝑦)) |
17 | 16 | elv 2730 | . . . . 5 ⊢ (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = ∩ 𝑦) |
18 | 15, 17 | bitr4di 197 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ 𝑥 ∈ ran 𝐹)) |
19 | 18 | eqrdv 2163 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = ran 𝐹) |
20 | foeq3 5408 | . . 3 ⊢ ((fi‘𝐴) = ran 𝐹 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)) | |
21 | 19, 20 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)) |
22 | 14, 21 | mpbird 166 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ≠ wne 2336 ∀wral 2444 ∃wrex 2445 Vcvv 2726 ∖ cdif 3113 ∩ cin 3115 ∅c0 3409 𝒫 cpw 3559 {csn 3576 ∩ cint 3824 ↦ cmpt 4043 ran crn 4605 Fn wfn 5183 –onto→wfo 5186 ‘cfv 5188 Fincfn 6706 ficfi 6933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 df-fin 6709 df-fi 6934 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |