| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fifo | GIF version | ||
| Description: Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.) |
| Ref | Expression |
|---|---|
| fifo.1 | ⊢ 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑦) |
| Ref | Expression |
|---|---|
| fifo | ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsni 3776 | . . . . . . 7 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅) | |
| 2 | eldifi 3306 | . . . . . . . . 9 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) | |
| 3 | 2 | elin2d 3374 | . . . . . . . 8 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ∈ Fin) |
| 4 | fin0 7015 | . . . . . . . 8 ⊢ (𝑦 ∈ Fin → (𝑦 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝑦)) | |
| 5 | 3, 4 | syl 14 | . . . . . . 7 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → (𝑦 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝑦)) |
| 6 | 1, 5 | mpbid 147 | . . . . . 6 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → ∃𝑤 𝑤 ∈ 𝑦) |
| 7 | inteximm 4212 | . . . . . 6 ⊢ (∃𝑤 𝑤 ∈ 𝑦 → ∩ 𝑦 ∈ V) | |
| 8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → ∩ 𝑦 ∈ V) |
| 9 | 8 | rgen 2563 | . . . 4 ⊢ ∀𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})∩ 𝑦 ∈ V |
| 10 | fifo.1 | . . . . 5 ⊢ 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑦) | |
| 11 | 10 | fnmpt 5426 | . . . 4 ⊢ (∀𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})∩ 𝑦 ∈ V → 𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅})) |
| 12 | 9, 11 | mp1i 10 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅})) |
| 13 | dffn4 5530 | . . 3 ⊢ (𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹) | |
| 14 | 12, 13 | sylib 122 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹) |
| 15 | elfi2 7107 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = ∩ 𝑦)) | |
| 16 | 10 | elrnmpt 4949 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = ∩ 𝑦)) |
| 17 | 16 | elv 2783 | . . . . 5 ⊢ (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = ∩ 𝑦) |
| 18 | 15, 17 | bitr4di 198 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ 𝑥 ∈ ran 𝐹)) |
| 19 | 18 | eqrdv 2207 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = ran 𝐹) |
| 20 | foeq3 5522 | . . 3 ⊢ ((fi‘𝐴) = ran 𝐹 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)) | |
| 21 | 19, 20 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)) |
| 22 | 14, 21 | mpbird 167 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ∃wex 1518 ∈ wcel 2180 ≠ wne 2380 ∀wral 2488 ∃wrex 2489 Vcvv 2779 ∖ cdif 3174 ∩ cin 3176 ∅c0 3471 𝒫 cpw 3629 {csn 3646 ∩ cint 3902 ↦ cmpt 4124 ran crn 4697 Fn wfn 5289 –onto→wfo 5292 ‘cfv 5294 Fincfn 6857 ficfi 7103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-er 6650 df-en 6858 df-fin 6860 df-fi 7104 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |