![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fifo | GIF version |
Description: Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
fifo.1 | ⊢ 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑦) |
Ref | Expression |
---|---|
fifo | ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsni 3735 | . . . . . . 7 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅) | |
2 | eldifi 3271 | . . . . . . . . 9 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) | |
3 | 2 | elin2d 3339 | . . . . . . . 8 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ∈ Fin) |
4 | fin0 6902 | . . . . . . . 8 ⊢ (𝑦 ∈ Fin → (𝑦 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝑦)) | |
5 | 3, 4 | syl 14 | . . . . . . 7 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → (𝑦 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝑦)) |
6 | 1, 5 | mpbid 147 | . . . . . 6 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → ∃𝑤 𝑤 ∈ 𝑦) |
7 | inteximm 4163 | . . . . . 6 ⊢ (∃𝑤 𝑤 ∈ 𝑦 → ∩ 𝑦 ∈ V) | |
8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → ∩ 𝑦 ∈ V) |
9 | 8 | rgen 2542 | . . . 4 ⊢ ∀𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})∩ 𝑦 ∈ V |
10 | fifo.1 | . . . . 5 ⊢ 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑦) | |
11 | 10 | fnmpt 5356 | . . . 4 ⊢ (∀𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})∩ 𝑦 ∈ V → 𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅})) |
12 | 9, 11 | mp1i 10 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅})) |
13 | dffn4 5458 | . . 3 ⊢ (𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹) | |
14 | 12, 13 | sylib 122 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹) |
15 | elfi2 6988 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = ∩ 𝑦)) | |
16 | 10 | elrnmpt 4890 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = ∩ 𝑦)) |
17 | 16 | elv 2755 | . . . . 5 ⊢ (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = ∩ 𝑦) |
18 | 15, 17 | bitr4di 198 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ 𝑥 ∈ ran 𝐹)) |
19 | 18 | eqrdv 2186 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = ran 𝐹) |
20 | foeq3 5450 | . . 3 ⊢ ((fi‘𝐴) = ran 𝐹 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)) | |
21 | 19, 20 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)) |
22 | 14, 21 | mpbird 167 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1363 ∃wex 1502 ∈ wcel 2159 ≠ wne 2359 ∀wral 2467 ∃wrex 2468 Vcvv 2751 ∖ cdif 3140 ∩ cin 3142 ∅c0 3436 𝒫 cpw 3589 {csn 3606 ∩ cint 3858 ↦ cmpt 4078 ran crn 4641 Fn wfn 5225 –onto→wfo 5228 ‘cfv 5230 Fincfn 6757 ficfi 6984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-nul 4143 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-iinf 4601 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-ral 2472 df-rex 2473 df-v 2753 df-sbc 2977 df-csb 3072 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-nul 3437 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-int 3859 df-br 4018 df-opab 4079 df-mpt 4080 df-id 4307 df-suc 4385 df-iom 4604 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-ima 4653 df-iota 5192 df-fun 5232 df-fn 5233 df-f 5234 df-f1 5235 df-fo 5236 df-f1o 5237 df-fv 5238 df-er 6552 df-en 6758 df-fin 6760 df-fi 6985 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |