ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fifo GIF version

Theorem fifo 6996
Description: Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.)
Hypothesis
Ref Expression
fifo.1 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦)
Assertion
Ref Expression
fifo (𝐴𝑉𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem fifo
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsni 3735 . . . . . . 7 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅)
2 eldifi 3271 . . . . . . . . 9 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
32elin2d 3339 . . . . . . . 8 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ∈ Fin)
4 fin0 6902 . . . . . . . 8 (𝑦 ∈ Fin → (𝑦 ≠ ∅ ↔ ∃𝑤 𝑤𝑦))
53, 4syl 14 . . . . . . 7 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → (𝑦 ≠ ∅ ↔ ∃𝑤 𝑤𝑦))
61, 5mpbid 147 . . . . . 6 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → ∃𝑤 𝑤𝑦)
7 inteximm 4163 . . . . . 6 (∃𝑤 𝑤𝑦 𝑦 ∈ V)
86, 7syl 14 . . . . 5 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ∈ V)
98rgen 2542 . . . 4 𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) 𝑦 ∈ V
10 fifo.1 . . . . 5 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦)
1110fnmpt 5356 . . . 4 (∀𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) 𝑦 ∈ V → 𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}))
129, 11mp1i 10 . . 3 (𝐴𝑉𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}))
13 dffn4 5458 . . 3 (𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)
1412, 13sylib 122 . 2 (𝐴𝑉𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)
15 elfi2 6988 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = 𝑦))
1610elrnmpt 4890 . . . . . 6 (𝑥 ∈ V → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = 𝑦))
1716elv 2755 . . . . 5 (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = 𝑦)
1815, 17bitr4di 198 . . . 4 (𝐴𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ 𝑥 ∈ ran 𝐹))
1918eqrdv 2186 . . 3 (𝐴𝑉 → (fi‘𝐴) = ran 𝐹)
20 foeq3 5450 . . 3 ((fi‘𝐴) = ran 𝐹 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹))
2119, 20syl 14 . 2 (𝐴𝑉 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹))
2214, 21mpbird 167 1 (𝐴𝑉𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1363  wex 1502  wcel 2159  wne 2359  wral 2467  wrex 2468  Vcvv 2751  cdif 3140  cin 3142  c0 3436  𝒫 cpw 3589  {csn 3606   cint 3858  cmpt 4078  ran crn 4641   Fn wfn 5225  ontowfo 5228  cfv 5230  Fincfn 6757  ficfi 6984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-iinf 4601
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-suc 4385  df-iom 4604  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-er 6552  df-en 6758  df-fin 6760  df-fi 6985
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator