Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fifo | GIF version |
Description: Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.) |
Ref | Expression |
---|---|
fifo.1 | ⊢ 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑦) |
Ref | Expression |
---|---|
fifo | ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsni 3690 | . . . . . . 7 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅) | |
2 | eldifi 3230 | . . . . . . . . 9 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) | |
3 | 2 | elin2d 3298 | . . . . . . . 8 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ∈ Fin) |
4 | fin0 6833 | . . . . . . . 8 ⊢ (𝑦 ∈ Fin → (𝑦 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝑦)) | |
5 | 3, 4 | syl 14 | . . . . . . 7 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → (𝑦 ≠ ∅ ↔ ∃𝑤 𝑤 ∈ 𝑦)) |
6 | 1, 5 | mpbid 146 | . . . . . 6 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → ∃𝑤 𝑤 ∈ 𝑦) |
7 | inteximm 4113 | . . . . . 6 ⊢ (∃𝑤 𝑤 ∈ 𝑦 → ∩ 𝑦 ∈ V) | |
8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → ∩ 𝑦 ∈ V) |
9 | 8 | rgen 2510 | . . . 4 ⊢ ∀𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})∩ 𝑦 ∈ V |
10 | fifo.1 | . . . . 5 ⊢ 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑦) | |
11 | 10 | fnmpt 5299 | . . . 4 ⊢ (∀𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})∩ 𝑦 ∈ V → 𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅})) |
12 | 9, 11 | mp1i 10 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅})) |
13 | dffn4 5401 | . . 3 ⊢ (𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹) | |
14 | 12, 13 | sylib 121 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹) |
15 | elfi2 6919 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = ∩ 𝑦)) | |
16 | 10 | elrnmpt 4838 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = ∩ 𝑦)) |
17 | 16 | elv 2716 | . . . . 5 ⊢ (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = ∩ 𝑦) |
18 | 15, 17 | bitr4di 197 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ 𝑥 ∈ ran 𝐹)) |
19 | 18 | eqrdv 2155 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = ran 𝐹) |
20 | foeq3 5393 | . . 3 ⊢ ((fi‘𝐴) = ran 𝐹 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)) | |
21 | 19, 20 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)) |
22 | 14, 21 | mpbird 166 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1335 ∃wex 1472 ∈ wcel 2128 ≠ wne 2327 ∀wral 2435 ∃wrex 2436 Vcvv 2712 ∖ cdif 3099 ∩ cin 3101 ∅c0 3395 𝒫 cpw 3544 {csn 3561 ∩ cint 3809 ↦ cmpt 4028 ran crn 4590 Fn wfn 5168 –onto→wfo 5171 ‘cfv 5173 Fincfn 6688 ficfi 6915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4085 ax-nul 4093 ax-pow 4138 ax-pr 4172 ax-un 4396 ax-iinf 4550 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3396 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-br 3968 df-opab 4029 df-mpt 4030 df-id 4256 df-suc 4334 df-iom 4553 df-xp 4595 df-rel 4596 df-cnv 4597 df-co 4598 df-dm 4599 df-rn 4600 df-res 4601 df-ima 4602 df-iota 5138 df-fun 5175 df-fn 5176 df-f 5177 df-f1 5178 df-fo 5179 df-f1o 5180 df-fv 5181 df-er 6483 df-en 6689 df-fin 6691 df-fi 6916 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |