ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inteqd GIF version

Theorem inteqd 3928
Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.)
Hypothesis
Ref Expression
inteqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
inteqd (𝜑 𝐴 = 𝐵)

Proof of Theorem inteqd
StepHypRef Expression
1 inteqd.1 . 2 (𝜑𝐴 = 𝐵)
2 inteq 3926 . 2 (𝐴 = 𝐵 𝐴 = 𝐵)
31, 2syl 14 1 (𝜑 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395   cint 3923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-int 3924
This theorem is referenced by:  intprg  3956  op1stbg  4570  onsucmin  4599  elreldm  4950  elxp5  5217  fniinfv  5694  1stval2  6307  2ndval2  6308  fundmen  6967  xpsnen  6988  fiintim  7101  elfi2  7147  fi0  7150  cardcl  7361  isnumi  7362  cardval3ex  7365  carden2bex  7370  lspfval  14360  lspval  14362  lsppropd  14404  clsfval  14783  clsval  14793
  Copyright terms: Public domain W3C validator