| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inteqd | GIF version | ||
| Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| inteqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| inteqd | ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | inteq 3926 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → ∩ 𝐴 = ∩ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∩ cint 3923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-int 3924 |
| This theorem is referenced by: intprg 3956 op1stbg 4570 onsucmin 4599 elreldm 4950 elxp5 5217 fniinfv 5694 1stval2 6307 2ndval2 6308 fundmen 6967 xpsnen 6988 fiintim 7101 elfi2 7147 fi0 7150 cardcl 7361 isnumi 7362 cardval3ex 7365 carden2bex 7370 lspfval 14360 lspval 14362 lsppropd 14404 clsfval 14783 clsval 14793 |
| Copyright terms: Public domain | W3C validator |