Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  inteqd GIF version

Theorem inteqd 3776
 Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.)
Hypothesis
Ref Expression
inteqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
inteqd (𝜑 𝐴 = 𝐵)

Proof of Theorem inteqd
StepHypRef Expression
1 inteqd.1 . 2 (𝜑𝐴 = 𝐵)
2 inteq 3774 . 2 (𝐴 = 𝐵 𝐴 = 𝐵)
31, 2syl 14 1 (𝜑 𝐴 = 𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1331  ∩ cint 3771 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-int 3772 This theorem is referenced by:  intprg  3804  op1stbg  4400  onsucmin  4423  elreldm  4765  elxp5  5027  fniinfv  5479  1stval2  6053  2ndval2  6054  fundmen  6700  xpsnen  6715  fiintim  6817  elfi2  6860  fi0  6863  cardcl  7037  isnumi  7038  cardval3ex  7041  carden2bex  7045  clsfval  12280  clsval  12290
 Copyright terms: Public domain W3C validator