ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inteqd GIF version

Theorem inteqd 3907
Description: Equality deduction for class intersection. (Contributed by NM, 2-Sep-2003.)
Hypothesis
Ref Expression
inteqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
inteqd (𝜑 𝐴 = 𝐵)

Proof of Theorem inteqd
StepHypRef Expression
1 inteqd.1 . 2 (𝜑𝐴 = 𝐵)
2 inteq 3905 . 2 (𝐴 = 𝐵 𝐴 = 𝐵)
31, 2syl 14 1 (𝜑 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375   cint 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-int 3903
This theorem is referenced by:  intprg  3935  op1stbg  4547  onsucmin  4576  elreldm  4926  elxp5  5193  fniinfv  5665  1stval2  6271  2ndval2  6272  fundmen  6929  xpsnen  6948  fiintim  7061  elfi2  7107  fi0  7110  cardcl  7321  isnumi  7322  cardval3ex  7325  carden2bex  7330  lspfval  14317  lspval  14319  lsppropd  14361  clsfval  14740  clsval  14750
  Copyright terms: Public domain W3C validator