| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab2 | GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2.1 | ⊢ 𝐴 ∈ V |
| elab2.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2.3 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2 | ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elab2.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | elab2.3 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 4 | 2, 3 | elab2g 2930 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ∈ wcel 2180 {cab 2195 Vcvv 2779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 |
| This theorem is referenced by: elpw 3635 elint 3908 opabid 4323 elrn2 4942 elimasn 5071 oprabid 6006 tfrlem3a 6426 tfrcllemsucaccv 6470 tfrcllembxssdm 6472 tfrcllemres 6478 addnqprlemrl 7712 addnqprlemru 7713 addnqprlemfl 7714 addnqprlemfu 7715 mulnqprlemrl 7728 mulnqprlemru 7729 mulnqprlemfl 7730 mulnqprlemfu 7731 ltnqpr 7748 ltnqpri 7749 archpr 7798 cauappcvgprlemladdfu 7809 cauappcvgprlemladdfl 7810 caucvgprlemladdfu 7832 caucvgprprlemopu 7854 suplocexprlemloc 7876 4sqlem12 12891 txuni2 14895 |
| Copyright terms: Public domain | W3C validator |