ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab2 GIF version

Theorem elab2 2912
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
Hypotheses
Ref Expression
elab2.1 𝐴 ∈ V
elab2.2 (𝑥 = 𝐴 → (𝜑𝜓))
elab2.3 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
elab2 (𝐴𝐵𝜓)
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elab2
StepHypRef Expression
1 elab2.1 . 2 𝐴 ∈ V
2 elab2.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
3 elab2.3 . . 3 𝐵 = {𝑥𝜑}
42, 3elab2g 2911 . 2 (𝐴 ∈ V → (𝐴𝐵𝜓))
51, 4ax-mp 5 1 (𝐴𝐵𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  {cab 2182  Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by:  elpw  3612  elint  3881  opabid  4291  elrn2  4909  elimasn  5037  oprabid  5957  tfrlem3a  6377  tfrcllemsucaccv  6421  tfrcllembxssdm  6423  tfrcllemres  6429  addnqprlemrl  7643  addnqprlemru  7644  addnqprlemfl  7645  addnqprlemfu  7646  mulnqprlemrl  7659  mulnqprlemru  7660  mulnqprlemfl  7661  mulnqprlemfu  7662  ltnqpr  7679  ltnqpri  7680  archpr  7729  cauappcvgprlemladdfu  7740  cauappcvgprlemladdfl  7741  caucvgprlemladdfu  7763  caucvgprprlemopu  7785  suplocexprlemloc  7807  4sqlem12  12598  txuni2  14578
  Copyright terms: Public domain W3C validator