ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab2 GIF version

Theorem elab2 2860
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
Hypotheses
Ref Expression
elab2.1 𝐴 ∈ V
elab2.2 (𝑥 = 𝐴 → (𝜑𝜓))
elab2.3 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
elab2 (𝐴𝐵𝜓)
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elab2
StepHypRef Expression
1 elab2.1 . 2 𝐴 ∈ V
2 elab2.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
3 elab2.3 . . 3 𝐵 = {𝑥𝜑}
42, 3elab2g 2859 . 2 (𝐴 ∈ V → (𝐴𝐵𝜓))
51, 4ax-mp 5 1 (𝐴𝐵𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1335  wcel 2128  {cab 2143  Vcvv 2712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714
This theorem is referenced by:  elpw  3549  elint  3814  opabid  4218  elrn2  4829  elimasn  4954  oprabid  5854  tfrlem3a  6258  tfrcllemsucaccv  6302  tfrcllembxssdm  6304  tfrcllemres  6310  addnqprlemrl  7478  addnqprlemru  7479  addnqprlemfl  7480  addnqprlemfu  7481  mulnqprlemrl  7494  mulnqprlemru  7495  mulnqprlemfl  7496  mulnqprlemfu  7497  ltnqpr  7514  ltnqpri  7515  archpr  7564  cauappcvgprlemladdfu  7575  cauappcvgprlemladdfl  7576  caucvgprlemladdfu  7598  caucvgprprlemopu  7620  suplocexprlemloc  7642  txuni2  12698
  Copyright terms: Public domain W3C validator