| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab2 | GIF version | ||
| Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elab2.1 | ⊢ 𝐴 ∈ V |
| elab2.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| elab2.3 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| elab2 | ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab2.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elab2.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | elab2.3 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 4 | 2, 3 | elab2g 2911 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {cab 2182 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: elpw 3611 elint 3880 opabid 4290 elrn2 4908 elimasn 5036 oprabid 5954 tfrlem3a 6368 tfrcllemsucaccv 6412 tfrcllembxssdm 6414 tfrcllemres 6420 addnqprlemrl 7624 addnqprlemru 7625 addnqprlemfl 7626 addnqprlemfu 7627 mulnqprlemrl 7640 mulnqprlemru 7641 mulnqprlemfl 7642 mulnqprlemfu 7643 ltnqpr 7660 ltnqpri 7661 archpr 7710 cauappcvgprlemladdfu 7721 cauappcvgprlemladdfl 7722 caucvgprlemladdfu 7744 caucvgprprlemopu 7766 suplocexprlemloc 7788 4sqlem12 12571 txuni2 14492 |
| Copyright terms: Public domain | W3C validator |