![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elab2 | GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2.1 | ⊢ 𝐴 ∈ V |
elab2.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
elab2.3 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
elab2 | ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elab2.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | elab2.3 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
4 | 2, 3 | elab2g 2885 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {cab 2163 Vcvv 2738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 |
This theorem is referenced by: elpw 3582 elint 3851 opabid 4258 elrn2 4870 elimasn 4996 oprabid 5907 tfrlem3a 6311 tfrcllemsucaccv 6355 tfrcllembxssdm 6357 tfrcllemres 6363 addnqprlemrl 7556 addnqprlemru 7557 addnqprlemfl 7558 addnqprlemfu 7559 mulnqprlemrl 7572 mulnqprlemru 7573 mulnqprlemfl 7574 mulnqprlemfu 7575 ltnqpr 7592 ltnqpri 7593 archpr 7642 cauappcvgprlemladdfu 7653 cauappcvgprlemladdfl 7654 caucvgprlemladdfu 7676 caucvgprprlemopu 7698 suplocexprlemloc 7720 txuni2 13759 |
Copyright terms: Public domain | W3C validator |