Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elab2 | GIF version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2.1 | ⊢ 𝐴 ∈ V |
elab2.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
elab2.3 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
elab2 | ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elab2.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | elab2.3 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
4 | 2, 3 | elab2g 2859 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ 𝜓)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1335 ∈ wcel 2128 {cab 2143 Vcvv 2712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 |
This theorem is referenced by: elpw 3549 elint 3814 opabid 4218 elrn2 4829 elimasn 4954 oprabid 5854 tfrlem3a 6258 tfrcllemsucaccv 6302 tfrcllembxssdm 6304 tfrcllemres 6310 addnqprlemrl 7478 addnqprlemru 7479 addnqprlemfl 7480 addnqprlemfu 7481 mulnqprlemrl 7494 mulnqprlemru 7495 mulnqprlemfl 7496 mulnqprlemfu 7497 ltnqpr 7514 ltnqpri 7515 archpr 7564 cauappcvgprlemladdfu 7575 cauappcvgprlemladdfl 7576 caucvgprlemladdfu 7598 caucvgprprlemopu 7620 suplocexprlemloc 7642 txuni2 12698 |
Copyright terms: Public domain | W3C validator |