ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab2 GIF version

Theorem elab2 2874
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.)
Hypotheses
Ref Expression
elab2.1 𝐴 ∈ V
elab2.2 (𝑥 = 𝐴 → (𝜑𝜓))
elab2.3 𝐵 = {𝑥𝜑}
Assertion
Ref Expression
elab2 (𝐴𝐵𝜓)
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elab2
StepHypRef Expression
1 elab2.1 . 2 𝐴 ∈ V
2 elab2.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
3 elab2.3 . . 3 𝐵 = {𝑥𝜑}
42, 3elab2g 2873 . 2 (𝐴 ∈ V → (𝐴𝐵𝜓))
51, 4ax-mp 5 1 (𝐴𝐵𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wcel 2136  {cab 2151  Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  elpw  3565  elint  3830  opabid  4235  elrn2  4846  elimasn  4971  oprabid  5874  tfrlem3a  6278  tfrcllemsucaccv  6322  tfrcllembxssdm  6324  tfrcllemres  6330  addnqprlemrl  7498  addnqprlemru  7499  addnqprlemfl  7500  addnqprlemfu  7501  mulnqprlemrl  7514  mulnqprlemru  7515  mulnqprlemfl  7516  mulnqprlemfu  7517  ltnqpr  7534  ltnqpri  7535  archpr  7584  cauappcvgprlemladdfu  7595  cauappcvgprlemladdfl  7596  caucvgprlemladdfu  7618  caucvgprprlemopu  7640  suplocexprlemloc  7662  txuni2  12896
  Copyright terms: Public domain W3C validator