ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemga GIF version

Theorem resqrexlemga 10735
Description: Lemma for resqrex 10738. The sequence formed by squaring each term of 𝐹 converges to 𝐴. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
resqrexlemsqa.g 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
Assertion
Ref Expression
resqrexlemga (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑗,𝐹,𝑘   𝑥,𝐹,𝑘   𝑒,𝑗,𝑘,𝜑   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑖)   𝐴(𝑥,𝑒,𝑖,𝑗,𝑘)   𝐹(𝑦,𝑧,𝑒,𝑖)   𝐺(𝑥,𝑦,𝑧,𝑒,𝑖,𝑗,𝑘)   𝐿(𝑥,𝑦,𝑧,𝑒,𝑖,𝑗,𝑘)

Proof of Theorem resqrexlemga
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . . . . 11 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 10719 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
54adantr 272 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 𝐹:ℕ⟶ℝ+)
6 1nn 8688 . . . . . . . . . 10 1 ∈ ℕ
76a1i 9 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 1 ∈ ℕ)
85, 7ffvelrnd 5522 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝐹‘1) ∈ ℝ+)
9 2z 9033 . . . . . . . . 9 2 ∈ ℤ
109a1i 9 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → 2 ∈ ℤ)
118, 10rpexpcld 10388 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ((𝐹‘1)↑2) ∈ ℝ+)
12 simpr 109 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
1311, 12rpdivcld 9447 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (((𝐹‘1)↑2) / 𝑒) ∈ ℝ+)
1413rpred 9429 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (((𝐹‘1)↑2) / 𝑒) ∈ ℝ)
15 1red 7745 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → 1 ∈ ℝ)
1614, 15readdcld 7759 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ((((𝐹‘1)↑2) / 𝑒) + 1) ∈ ℝ)
17 arch 8925 . . . 4 (((((𝐹‘1)↑2) / 𝑒) + 1) ∈ ℝ → ∃𝑗 ∈ ℕ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗)
1816, 17syl 14 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗)
19 simpllr 506 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
20 simpr 109 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
21 eluznn 9343 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
2219, 20, 21syl2anc 406 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
23 simplll 505 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) → 𝜑)
2423adantr 272 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
2524, 4syl 14 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:ℕ⟶ℝ+)
2625, 22ffvelrnd 5522 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ+)
279a1i 9 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 2 ∈ ℤ)
2826, 27rpexpcld 10388 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)↑2) ∈ ℝ+)
29 fveq2 5387 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
3029oveq1d 5755 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝐹𝑥)↑2) = ((𝐹𝑘)↑2))
31 resqrexlemsqa.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
3230, 31fvmptg 5463 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ ((𝐹𝑘)↑2) ∈ ℝ+) → (𝐺𝑘) = ((𝐹𝑘)↑2))
3322, 28, 32syl2anc 406 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) = ((𝐹𝑘)↑2))
3428rpred 9429 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)↑2) ∈ ℝ)
3524, 2syl 14 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℝ)
3634, 35resubcld 8107 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)↑2) − 𝐴) ∈ ℝ)
3711ad3antrrr 481 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹‘1)↑2) ∈ ℝ+)
3837rpred 9429 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹‘1)↑2) ∈ ℝ)
39 4re 8754 . . . . . . . . . . . . . 14 4 ∈ ℝ
40 4pos 8774 . . . . . . . . . . . . . 14 0 < 4
4139, 40elrpii 9393 . . . . . . . . . . . . 13 4 ∈ ℝ+
4241a1i 9 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 4 ∈ ℝ+)
43 nnm1nn0 8969 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
4422, 43syl 14 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ ℕ0)
4544nn0zd 9122 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ ℤ)
4642, 45rpexpcld 10388 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (4↑(𝑘 − 1)) ∈ ℝ+)
4738, 46rerpdivcld 9461 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) ∈ ℝ)
4812ad3antrrr 481 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑒 ∈ ℝ+)
4948rpred 9429 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑒 ∈ ℝ)
501, 2, 3resqrexlemcalc3 10728 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))
5124, 22, 50syl2anc 406 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))
5214ad3antrrr 481 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / 𝑒) ∈ ℝ)
5322nnred 8690 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
54 1red 7745 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 1 ∈ ℝ)
5553, 54resubcld 8107 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ ℝ)
5639a1i 9 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 4 ∈ ℝ)
5756, 44reexpcld 10381 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (4↑(𝑘 − 1)) ∈ ℝ)
5816ad3antrrr 481 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹‘1)↑2) / 𝑒) + 1) ∈ ℝ)
5919nnred 8690 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
60 simplr 502 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗)
61 eluzle 9287 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
6261adantl 273 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
6358, 59, 53, 60, 62ltletrd 8149 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑘)
6452, 54, 53ltaddsubd 8270 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑘 ↔ (((𝐹‘1)↑2) / 𝑒) < (𝑘 − 1)))
6563, 64mpbid 146 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / 𝑒) < (𝑘 − 1))
66 4z 9035 . . . . . . . . . . . . . 14 4 ∈ ℤ
67 2re 8747 . . . . . . . . . . . . . . 15 2 ∈ ℝ
68 2lt4 8844 . . . . . . . . . . . . . . 15 2 < 4
6967, 39, 68ltleii 7830 . . . . . . . . . . . . . 14 2 ≤ 4
70 eluz2 9281 . . . . . . . . . . . . . 14 (4 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ≤ 4))
719, 66, 69, 70mpbir3an 1146 . . . . . . . . . . . . 13 4 ∈ (ℤ‘2)
72 bernneq3 10354 . . . . . . . . . . . . 13 ((4 ∈ (ℤ‘2) ∧ (𝑘 − 1) ∈ ℕ0) → (𝑘 − 1) < (4↑(𝑘 − 1)))
7371, 44, 72sylancr 408 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) < (4↑(𝑘 − 1)))
7452, 55, 57, 65, 73lttrd 7852 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / 𝑒) < (4↑(𝑘 − 1)))
7538, 48, 46, 74ltdiv23d 9490 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) < 𝑒)
7636, 47, 49, 51, 75lelttrd 7851 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)↑2) − 𝐴) < 𝑒)
7734, 35, 49ltsubadd2d 8268 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹𝑘)↑2) − 𝐴) < 𝑒 ↔ ((𝐹𝑘)↑2) < (𝐴 + 𝑒)))
7876, 77mpbid 146 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)↑2) < (𝐴 + 𝑒))
7933, 78eqbrtrd 3918 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) < (𝐴 + 𝑒))
8033, 28eqeltrd 2192 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) ∈ ℝ+)
8180rpred 9429 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) ∈ ℝ)
8281, 49readdcld 7759 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐺𝑘) + 𝑒) ∈ ℝ)
831, 2, 3resqrexlemover 10722 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 < ((𝐹𝑘)↑2))
8424, 22, 83syl2anc 406 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 < ((𝐹𝑘)↑2))
8584, 33breqtrrd 3924 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 < (𝐺𝑘))
8681, 48ltaddrpd 9463 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) < ((𝐺𝑘) + 𝑒))
8735, 81, 82, 85, 86lttrd 7852 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 < ((𝐺𝑘) + 𝑒))
8879, 87jca 302 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
8988ralrimiva 2480 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
9089ex 114 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗 → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒))))
9190reximdva 2509 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∃𝑗 ∈ ℕ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒))))
9218, 91mpd 13 . 2 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
9392ralrimiva 2480 1 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463  wral 2391  wrex 2392  {csn 3495   class class class wbr 3897  cmpt 3957   × cxp 4505  wf 5087  cfv 5091  (class class class)co 5740  cmpo 5742  cr 7583  0cc0 7584  1c1 7585   + caddc 7587   < clt 7764  cle 7765  cmin 7897   / cdiv 8392  cn 8677  2c2 8728  4c4 8730  0cn0 8928  cz 9005  cuz 9275  +crp 9390  seqcseq 10158  cexp 10232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-rp 9391  df-seqfrec 10159  df-exp 10233
This theorem is referenced by:  resqrexlemsqa  10736
  Copyright terms: Public domain W3C validator