ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemga GIF version

Theorem resqrexlemga 11016
Description: Lemma for resqrex 11019. The sequence formed by squaring each term of 𝐹 converges to 𝐴. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
resqrexlemsqa.g 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
Assertion
Ref Expression
resqrexlemga (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑗,𝐹,𝑘   𝑥,𝐹,𝑘   𝑒,𝑗,𝑘,𝜑   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑖)   𝐴(𝑥,𝑒,𝑖,𝑗,𝑘)   𝐹(𝑦,𝑧,𝑒,𝑖)   𝐺(𝑥,𝑦,𝑧,𝑒,𝑖,𝑗,𝑘)   𝐿(𝑥,𝑦,𝑧,𝑒,𝑖,𝑗,𝑘)

Proof of Theorem resqrexlemga
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . . . . 11 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 11000 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
54adantr 276 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 𝐹:ℕ⟶ℝ+)
6 1nn 8919 . . . . . . . . . 10 1 ∈ ℕ
76a1i 9 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 1 ∈ ℕ)
85, 7ffvelcdmd 5648 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝐹‘1) ∈ ℝ+)
9 2z 9270 . . . . . . . . 9 2 ∈ ℤ
109a1i 9 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → 2 ∈ ℤ)
118, 10rpexpcld 10663 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ((𝐹‘1)↑2) ∈ ℝ+)
12 simpr 110 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
1311, 12rpdivcld 9701 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (((𝐹‘1)↑2) / 𝑒) ∈ ℝ+)
1413rpred 9683 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (((𝐹‘1)↑2) / 𝑒) ∈ ℝ)
15 1red 7963 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → 1 ∈ ℝ)
1614, 15readdcld 7977 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ((((𝐹‘1)↑2) / 𝑒) + 1) ∈ ℝ)
17 arch 9162 . . . 4 (((((𝐹‘1)↑2) / 𝑒) + 1) ∈ ℝ → ∃𝑗 ∈ ℕ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗)
1816, 17syl 14 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗)
19 simpllr 534 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
20 simpr 110 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
21 eluznn 9589 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
2219, 20, 21syl2anc 411 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
23 simplll 533 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) → 𝜑)
2423adantr 276 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
2524, 4syl 14 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:ℕ⟶ℝ+)
2625, 22ffvelcdmd 5648 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ+)
279a1i 9 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 2 ∈ ℤ)
2826, 27rpexpcld 10663 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)↑2) ∈ ℝ+)
29 fveq2 5511 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
3029oveq1d 5884 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝐹𝑥)↑2) = ((𝐹𝑘)↑2))
31 resqrexlemsqa.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
3230, 31fvmptg 5588 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ ((𝐹𝑘)↑2) ∈ ℝ+) → (𝐺𝑘) = ((𝐹𝑘)↑2))
3322, 28, 32syl2anc 411 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) = ((𝐹𝑘)↑2))
3428rpred 9683 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)↑2) ∈ ℝ)
3524, 2syl 14 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℝ)
3634, 35resubcld 8328 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)↑2) − 𝐴) ∈ ℝ)
3711ad3antrrr 492 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹‘1)↑2) ∈ ℝ+)
3837rpred 9683 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹‘1)↑2) ∈ ℝ)
39 4re 8985 . . . . . . . . . . . . . 14 4 ∈ ℝ
40 4pos 9005 . . . . . . . . . . . . . 14 0 < 4
4139, 40elrpii 9643 . . . . . . . . . . . . 13 4 ∈ ℝ+
4241a1i 9 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 4 ∈ ℝ+)
43 nnm1nn0 9206 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
4422, 43syl 14 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ ℕ0)
4544nn0zd 9362 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ ℤ)
4642, 45rpexpcld 10663 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (4↑(𝑘 − 1)) ∈ ℝ+)
4738, 46rerpdivcld 9715 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) ∈ ℝ)
4812ad3antrrr 492 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑒 ∈ ℝ+)
4948rpred 9683 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑒 ∈ ℝ)
501, 2, 3resqrexlemcalc3 11009 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))
5124, 22, 50syl2anc 411 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))
5214ad3antrrr 492 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / 𝑒) ∈ ℝ)
5322nnred 8921 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
54 1red 7963 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 1 ∈ ℝ)
5553, 54resubcld 8328 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ ℝ)
5639a1i 9 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 4 ∈ ℝ)
5756, 44reexpcld 10656 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (4↑(𝑘 − 1)) ∈ ℝ)
5816ad3antrrr 492 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹‘1)↑2) / 𝑒) + 1) ∈ ℝ)
5919nnred 8921 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
60 simplr 528 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗)
61 eluzle 9529 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
6261adantl 277 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
6358, 59, 53, 60, 62ltletrd 8370 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑘)
6452, 54, 53ltaddsubd 8492 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑘 ↔ (((𝐹‘1)↑2) / 𝑒) < (𝑘 − 1)))
6563, 64mpbid 147 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / 𝑒) < (𝑘 − 1))
66 4z 9272 . . . . . . . . . . . . . 14 4 ∈ ℤ
67 2re 8978 . . . . . . . . . . . . . . 15 2 ∈ ℝ
68 2lt4 9081 . . . . . . . . . . . . . . 15 2 < 4
6967, 39, 68ltleii 8050 . . . . . . . . . . . . . 14 2 ≤ 4
70 eluz2 9523 . . . . . . . . . . . . . 14 (4 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ≤ 4))
719, 66, 69, 70mpbir3an 1179 . . . . . . . . . . . . 13 4 ∈ (ℤ‘2)
72 bernneq3 10628 . . . . . . . . . . . . 13 ((4 ∈ (ℤ‘2) ∧ (𝑘 − 1) ∈ ℕ0) → (𝑘 − 1) < (4↑(𝑘 − 1)))
7371, 44, 72sylancr 414 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) < (4↑(𝑘 − 1)))
7452, 55, 57, 65, 73lttrd 8073 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / 𝑒) < (4↑(𝑘 − 1)))
7538, 48, 46, 74ltdiv23d 9744 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) < 𝑒)
7636, 47, 49, 51, 75lelttrd 8072 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)↑2) − 𝐴) < 𝑒)
7734, 35, 49ltsubadd2d 8490 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹𝑘)↑2) − 𝐴) < 𝑒 ↔ ((𝐹𝑘)↑2) < (𝐴 + 𝑒)))
7876, 77mpbid 147 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)↑2) < (𝐴 + 𝑒))
7933, 78eqbrtrd 4022 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) < (𝐴 + 𝑒))
8033, 28eqeltrd 2254 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) ∈ ℝ+)
8180rpred 9683 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) ∈ ℝ)
8281, 49readdcld 7977 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐺𝑘) + 𝑒) ∈ ℝ)
831, 2, 3resqrexlemover 11003 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 < ((𝐹𝑘)↑2))
8424, 22, 83syl2anc 411 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 < ((𝐹𝑘)↑2))
8584, 33breqtrrd 4028 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 < (𝐺𝑘))
8681, 48ltaddrpd 9717 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) < ((𝐺𝑘) + 𝑒))
8735, 81, 82, 85, 86lttrd 8073 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 < ((𝐺𝑘) + 𝑒))
8879, 87jca 306 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
8988ralrimiva 2550 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
9089ex 115 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗 → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒))))
9190reximdva 2579 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∃𝑗 ∈ ℕ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒))))
9218, 91mpd 13 . 2 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
9392ralrimiva 2550 1 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  wrex 2456  {csn 3591   class class class wbr 4000  cmpt 4061   × cxp 4621  wf 5208  cfv 5212  (class class class)co 5869  cmpo 5871  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   < clt 7982  cle 7983  cmin 8118   / cdiv 8618  cn 8908  2c2 8959  4c4 8961  0cn0 9165  cz 9242  cuz 9517  +crp 9640  seqcseq 10431  cexp 10505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506
This theorem is referenced by:  resqrexlemsqa  11017
  Copyright terms: Public domain W3C validator