ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemga GIF version

Theorem resqrexlemga 10987
Description: Lemma for resqrex 10990. The sequence formed by squaring each term of 𝐹 converges to 𝐴. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
resqrexlemsqa.g 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
Assertion
Ref Expression
resqrexlemga (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑗,𝐹,𝑘   𝑥,𝐹,𝑘   𝑒,𝑗,𝑘,𝜑   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑖)   𝐴(𝑥,𝑒,𝑖,𝑗,𝑘)   𝐹(𝑦,𝑧,𝑒,𝑖)   𝐺(𝑥,𝑦,𝑧,𝑒,𝑖,𝑗,𝑘)   𝐿(𝑥,𝑦,𝑧,𝑒,𝑖,𝑗,𝑘)

Proof of Theorem resqrexlemga
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . . . . 11 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 10971 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
54adantr 274 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 𝐹:ℕ⟶ℝ+)
6 1nn 8889 . . . . . . . . . 10 1 ∈ ℕ
76a1i 9 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 1 ∈ ℕ)
85, 7ffvelrnd 5632 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝐹‘1) ∈ ℝ+)
9 2z 9240 . . . . . . . . 9 2 ∈ ℤ
109a1i 9 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → 2 ∈ ℤ)
118, 10rpexpcld 10633 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ((𝐹‘1)↑2) ∈ ℝ+)
12 simpr 109 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
1311, 12rpdivcld 9671 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (((𝐹‘1)↑2) / 𝑒) ∈ ℝ+)
1413rpred 9653 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (((𝐹‘1)↑2) / 𝑒) ∈ ℝ)
15 1red 7935 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → 1 ∈ ℝ)
1614, 15readdcld 7949 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ((((𝐹‘1)↑2) / 𝑒) + 1) ∈ ℝ)
17 arch 9132 . . . 4 (((((𝐹‘1)↑2) / 𝑒) + 1) ∈ ℝ → ∃𝑗 ∈ ℕ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗)
1816, 17syl 14 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗)
19 simpllr 529 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
20 simpr 109 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
21 eluznn 9559 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
2219, 20, 21syl2anc 409 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
23 simplll 528 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) → 𝜑)
2423adantr 274 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
2524, 4syl 14 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:ℕ⟶ℝ+)
2625, 22ffvelrnd 5632 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ+)
279a1i 9 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 2 ∈ ℤ)
2826, 27rpexpcld 10633 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)↑2) ∈ ℝ+)
29 fveq2 5496 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
3029oveq1d 5868 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝐹𝑥)↑2) = ((𝐹𝑘)↑2))
31 resqrexlemsqa.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
3230, 31fvmptg 5572 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ ((𝐹𝑘)↑2) ∈ ℝ+) → (𝐺𝑘) = ((𝐹𝑘)↑2))
3322, 28, 32syl2anc 409 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) = ((𝐹𝑘)↑2))
3428rpred 9653 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)↑2) ∈ ℝ)
3524, 2syl 14 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℝ)
3634, 35resubcld 8300 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)↑2) − 𝐴) ∈ ℝ)
3711ad3antrrr 489 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹‘1)↑2) ∈ ℝ+)
3837rpred 9653 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹‘1)↑2) ∈ ℝ)
39 4re 8955 . . . . . . . . . . . . . 14 4 ∈ ℝ
40 4pos 8975 . . . . . . . . . . . . . 14 0 < 4
4139, 40elrpii 9613 . . . . . . . . . . . . 13 4 ∈ ℝ+
4241a1i 9 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 4 ∈ ℝ+)
43 nnm1nn0 9176 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
4422, 43syl 14 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ ℕ0)
4544nn0zd 9332 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ ℤ)
4642, 45rpexpcld 10633 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (4↑(𝑘 − 1)) ∈ ℝ+)
4738, 46rerpdivcld 9685 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) ∈ ℝ)
4812ad3antrrr 489 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑒 ∈ ℝ+)
4948rpred 9653 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑒 ∈ ℝ)
501, 2, 3resqrexlemcalc3 10980 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))
5124, 22, 50syl2anc 409 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))
5214ad3antrrr 489 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / 𝑒) ∈ ℝ)
5322nnred 8891 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
54 1red 7935 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 1 ∈ ℝ)
5553, 54resubcld 8300 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ ℝ)
5639a1i 9 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 4 ∈ ℝ)
5756, 44reexpcld 10626 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (4↑(𝑘 − 1)) ∈ ℝ)
5816ad3antrrr 489 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹‘1)↑2) / 𝑒) + 1) ∈ ℝ)
5919nnred 8891 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
60 simplr 525 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗)
61 eluzle 9499 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
6261adantl 275 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
6358, 59, 53, 60, 62ltletrd 8342 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑘)
6452, 54, 53ltaddsubd 8464 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑘 ↔ (((𝐹‘1)↑2) / 𝑒) < (𝑘 − 1)))
6563, 64mpbid 146 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / 𝑒) < (𝑘 − 1))
66 4z 9242 . . . . . . . . . . . . . 14 4 ∈ ℤ
67 2re 8948 . . . . . . . . . . . . . . 15 2 ∈ ℝ
68 2lt4 9051 . . . . . . . . . . . . . . 15 2 < 4
6967, 39, 68ltleii 8022 . . . . . . . . . . . . . 14 2 ≤ 4
70 eluz2 9493 . . . . . . . . . . . . . 14 (4 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ≤ 4))
719, 66, 69, 70mpbir3an 1174 . . . . . . . . . . . . 13 4 ∈ (ℤ‘2)
72 bernneq3 10598 . . . . . . . . . . . . 13 ((4 ∈ (ℤ‘2) ∧ (𝑘 − 1) ∈ ℕ0) → (𝑘 − 1) < (4↑(𝑘 − 1)))
7371, 44, 72sylancr 412 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) < (4↑(𝑘 − 1)))
7452, 55, 57, 65, 73lttrd 8045 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / 𝑒) < (4↑(𝑘 − 1)))
7538, 48, 46, 74ltdiv23d 9714 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) < 𝑒)
7636, 47, 49, 51, 75lelttrd 8044 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)↑2) − 𝐴) < 𝑒)
7734, 35, 49ltsubadd2d 8462 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹𝑘)↑2) − 𝐴) < 𝑒 ↔ ((𝐹𝑘)↑2) < (𝐴 + 𝑒)))
7876, 77mpbid 146 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)↑2) < (𝐴 + 𝑒))
7933, 78eqbrtrd 4011 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) < (𝐴 + 𝑒))
8033, 28eqeltrd 2247 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) ∈ ℝ+)
8180rpred 9653 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) ∈ ℝ)
8281, 49readdcld 7949 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐺𝑘) + 𝑒) ∈ ℝ)
831, 2, 3resqrexlemover 10974 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 < ((𝐹𝑘)↑2))
8424, 22, 83syl2anc 409 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 < ((𝐹𝑘)↑2))
8584, 33breqtrrd 4017 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 < (𝐺𝑘))
8681, 48ltaddrpd 9687 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) < ((𝐺𝑘) + 𝑒))
8735, 81, 82, 85, 86lttrd 8045 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 < ((𝐺𝑘) + 𝑒))
8879, 87jca 304 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
8988ralrimiva 2543 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
9089ex 114 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗 → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒))))
9190reximdva 2572 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∃𝑗 ∈ ℕ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒))))
9218, 91mpd 13 . 2 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
9392ralrimiva 2543 1 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  wrex 2449  {csn 3583   class class class wbr 3989  cmpt 4050   × cxp 4609  wf 5194  cfv 5198  (class class class)co 5853  cmpo 5855  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   < clt 7954  cle 7955  cmin 8090   / cdiv 8589  cn 8878  2c2 8929  4c4 8931  0cn0 9135  cz 9212  cuz 9487  +crp 9610  seqcseq 10401  cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  resqrexlemsqa  10988
  Copyright terms: Public domain W3C validator