ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemga GIF version

Theorem resqrexlemga 11529
Description: Lemma for resqrex 11532. The sequence formed by squaring each term of 𝐹 converges to 𝐴. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
resqrexlemsqa.g 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
Assertion
Ref Expression
resqrexlemga (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑗,𝐹,𝑘   𝑥,𝐹,𝑘   𝑒,𝑗,𝑘,𝜑   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑖)   𝐴(𝑥,𝑒,𝑖,𝑗,𝑘)   𝐹(𝑦,𝑧,𝑒,𝑖)   𝐺(𝑥,𝑦,𝑧,𝑒,𝑖,𝑗,𝑘)   𝐿(𝑥,𝑦,𝑧,𝑒,𝑖,𝑗,𝑘)

Proof of Theorem resqrexlemga
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . . . . 11 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 11513 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
54adantr 276 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 𝐹:ℕ⟶ℝ+)
6 1nn 9117 . . . . . . . . . 10 1 ∈ ℕ
76a1i 9 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 1 ∈ ℕ)
85, 7ffvelcdmd 5770 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝐹‘1) ∈ ℝ+)
9 2z 9470 . . . . . . . . 9 2 ∈ ℤ
109a1i 9 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → 2 ∈ ℤ)
118, 10rpexpcld 10914 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ((𝐹‘1)↑2) ∈ ℝ+)
12 simpr 110 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
1311, 12rpdivcld 9906 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (((𝐹‘1)↑2) / 𝑒) ∈ ℝ+)
1413rpred 9888 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (((𝐹‘1)↑2) / 𝑒) ∈ ℝ)
15 1red 8157 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → 1 ∈ ℝ)
1614, 15readdcld 8172 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ((((𝐹‘1)↑2) / 𝑒) + 1) ∈ ℝ)
17 arch 9362 . . . 4 (((((𝐹‘1)↑2) / 𝑒) + 1) ∈ ℝ → ∃𝑗 ∈ ℕ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗)
1816, 17syl 14 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗)
19 simpllr 534 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
20 simpr 110 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
21 eluznn 9791 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
2219, 20, 21syl2anc 411 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
23 simplll 533 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) → 𝜑)
2423adantr 276 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
2524, 4syl 14 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:ℕ⟶ℝ+)
2625, 22ffvelcdmd 5770 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ+)
279a1i 9 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 2 ∈ ℤ)
2826, 27rpexpcld 10914 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)↑2) ∈ ℝ+)
29 fveq2 5626 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
3029oveq1d 6015 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝐹𝑥)↑2) = ((𝐹𝑘)↑2))
31 resqrexlemsqa.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
3230, 31fvmptg 5709 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ ((𝐹𝑘)↑2) ∈ ℝ+) → (𝐺𝑘) = ((𝐹𝑘)↑2))
3322, 28, 32syl2anc 411 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) = ((𝐹𝑘)↑2))
3428rpred 9888 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)↑2) ∈ ℝ)
3524, 2syl 14 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℝ)
3634, 35resubcld 8523 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)↑2) − 𝐴) ∈ ℝ)
3711ad3antrrr 492 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹‘1)↑2) ∈ ℝ+)
3837rpred 9888 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹‘1)↑2) ∈ ℝ)
39 4re 9183 . . . . . . . . . . . . . 14 4 ∈ ℝ
40 4pos 9203 . . . . . . . . . . . . . 14 0 < 4
4139, 40elrpii 9848 . . . . . . . . . . . . 13 4 ∈ ℝ+
4241a1i 9 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 4 ∈ ℝ+)
43 nnm1nn0 9406 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
4422, 43syl 14 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ ℕ0)
4544nn0zd 9563 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ ℤ)
4642, 45rpexpcld 10914 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (4↑(𝑘 − 1)) ∈ ℝ+)
4738, 46rerpdivcld 9920 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) ∈ ℝ)
4812ad3antrrr 492 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑒 ∈ ℝ+)
4948rpred 9888 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑒 ∈ ℝ)
501, 2, 3resqrexlemcalc3 11522 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))
5124, 22, 50syl2anc 411 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))
5214ad3antrrr 492 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / 𝑒) ∈ ℝ)
5322nnred 9119 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
54 1red 8157 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 1 ∈ ℝ)
5553, 54resubcld 8523 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ ℝ)
5639a1i 9 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 4 ∈ ℝ)
5756, 44reexpcld 10907 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (4↑(𝑘 − 1)) ∈ ℝ)
5816ad3antrrr 492 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹‘1)↑2) / 𝑒) + 1) ∈ ℝ)
5919nnred 9119 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
60 simplr 528 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗)
61 eluzle 9730 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
6261adantl 277 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
6358, 59, 53, 60, 62ltletrd 8566 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑘)
6452, 54, 53ltaddsubd 8688 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑘 ↔ (((𝐹‘1)↑2) / 𝑒) < (𝑘 − 1)))
6563, 64mpbid 147 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / 𝑒) < (𝑘 − 1))
66 4z 9472 . . . . . . . . . . . . . 14 4 ∈ ℤ
67 2re 9176 . . . . . . . . . . . . . . 15 2 ∈ ℝ
68 2lt4 9280 . . . . . . . . . . . . . . 15 2 < 4
6967, 39, 68ltleii 8245 . . . . . . . . . . . . . 14 2 ≤ 4
70 eluz2 9724 . . . . . . . . . . . . . 14 (4 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ≤ 4))
719, 66, 69, 70mpbir3an 1203 . . . . . . . . . . . . 13 4 ∈ (ℤ‘2)
72 bernneq3 10879 . . . . . . . . . . . . 13 ((4 ∈ (ℤ‘2) ∧ (𝑘 − 1) ∈ ℕ0) → (𝑘 − 1) < (4↑(𝑘 − 1)))
7371, 44, 72sylancr 414 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) < (4↑(𝑘 − 1)))
7452, 55, 57, 65, 73lttrd 8268 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / 𝑒) < (4↑(𝑘 − 1)))
7538, 48, 46, 74ltdiv23d 9949 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) < 𝑒)
7636, 47, 49, 51, 75lelttrd 8267 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)↑2) − 𝐴) < 𝑒)
7734, 35, 49ltsubadd2d 8686 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹𝑘)↑2) − 𝐴) < 𝑒 ↔ ((𝐹𝑘)↑2) < (𝐴 + 𝑒)))
7876, 77mpbid 147 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)↑2) < (𝐴 + 𝑒))
7933, 78eqbrtrd 4104 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) < (𝐴 + 𝑒))
8033, 28eqeltrd 2306 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) ∈ ℝ+)
8180rpred 9888 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) ∈ ℝ)
8281, 49readdcld 8172 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐺𝑘) + 𝑒) ∈ ℝ)
831, 2, 3resqrexlemover 11516 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 < ((𝐹𝑘)↑2))
8424, 22, 83syl2anc 411 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 < ((𝐹𝑘)↑2))
8584, 33breqtrrd 4110 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 < (𝐺𝑘))
8681, 48ltaddrpd 9922 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) < ((𝐺𝑘) + 𝑒))
8735, 81, 82, 85, 86lttrd 8268 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 < ((𝐺𝑘) + 𝑒))
8879, 87jca 306 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
8988ralrimiva 2603 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
9089ex 115 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗 → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒))))
9190reximdva 2632 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∃𝑗 ∈ ℕ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒))))
9218, 91mpd 13 . 2 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
9392ralrimiva 2603 1 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  wrex 2509  {csn 3666   class class class wbr 4082  cmpt 4144   × cxp 4716  wf 5313  cfv 5317  (class class class)co 6000  cmpo 6002  cr 7994  0cc0 7995  1c1 7996   + caddc 7998   < clt 8177  cle 8178  cmin 8313   / cdiv 8815  cn 9106  2c2 9157  4c4 9159  0cn0 9365  cz 9442  cuz 9718  +crp 9845  seqcseq 10664  cexp 10755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-seqfrec 10665  df-exp 10756
This theorem is referenced by:  resqrexlemsqa  11530
  Copyright terms: Public domain W3C validator