ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemga GIF version

Theorem resqrexlemga 11205
Description: Lemma for resqrex 11208. The sequence formed by squaring each term of 𝐹 converges to 𝐴. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
resqrexlemsqa.g 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
Assertion
Ref Expression
resqrexlemga (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑗,𝐹,𝑘   𝑥,𝐹,𝑘   𝑒,𝑗,𝑘,𝜑   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑖)   𝐴(𝑥,𝑒,𝑖,𝑗,𝑘)   𝐹(𝑦,𝑧,𝑒,𝑖)   𝐺(𝑥,𝑦,𝑧,𝑒,𝑖,𝑗,𝑘)   𝐿(𝑥,𝑦,𝑧,𝑒,𝑖,𝑗,𝑘)

Proof of Theorem resqrexlemga
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . . . . 11 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 11189 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ+)
54adantr 276 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 𝐹:ℕ⟶ℝ+)
6 1nn 9018 . . . . . . . . . 10 1 ∈ ℕ
76a1i 9 . . . . . . . . 9 ((𝜑𝑒 ∈ ℝ+) → 1 ∈ ℕ)
85, 7ffvelcdmd 5701 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → (𝐹‘1) ∈ ℝ+)
9 2z 9371 . . . . . . . . 9 2 ∈ ℤ
109a1i 9 . . . . . . . 8 ((𝜑𝑒 ∈ ℝ+) → 2 ∈ ℤ)
118, 10rpexpcld 10806 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → ((𝐹‘1)↑2) ∈ ℝ+)
12 simpr 110 . . . . . . 7 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
1311, 12rpdivcld 9806 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (((𝐹‘1)↑2) / 𝑒) ∈ ℝ+)
1413rpred 9788 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (((𝐹‘1)↑2) / 𝑒) ∈ ℝ)
15 1red 8058 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → 1 ∈ ℝ)
1614, 15readdcld 8073 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ((((𝐹‘1)↑2) / 𝑒) + 1) ∈ ℝ)
17 arch 9263 . . . 4 (((((𝐹‘1)↑2) / 𝑒) + 1) ∈ ℝ → ∃𝑗 ∈ ℕ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗)
1816, 17syl 14 . . 3 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗)
19 simpllr 534 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
20 simpr 110 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
21 eluznn 9691 . . . . . . . . . 10 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
2219, 20, 21syl2anc 411 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
23 simplll 533 . . . . . . . . . . . . 13 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) → 𝜑)
2423adantr 276 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
2524, 4syl 14 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:ℕ⟶ℝ+)
2625, 22ffvelcdmd 5701 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ+)
279a1i 9 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 2 ∈ ℤ)
2826, 27rpexpcld 10806 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)↑2) ∈ ℝ+)
29 fveq2 5561 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
3029oveq1d 5940 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝐹𝑥)↑2) = ((𝐹𝑘)↑2))
31 resqrexlemsqa.g . . . . . . . . . 10 𝐺 = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
3230, 31fvmptg 5640 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ ((𝐹𝑘)↑2) ∈ ℝ+) → (𝐺𝑘) = ((𝐹𝑘)↑2))
3322, 28, 32syl2anc 411 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) = ((𝐹𝑘)↑2))
3428rpred 9788 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)↑2) ∈ ℝ)
3524, 2syl 14 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℝ)
3634, 35resubcld 8424 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)↑2) − 𝐴) ∈ ℝ)
3711ad3antrrr 492 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹‘1)↑2) ∈ ℝ+)
3837rpred 9788 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹‘1)↑2) ∈ ℝ)
39 4re 9084 . . . . . . . . . . . . . 14 4 ∈ ℝ
40 4pos 9104 . . . . . . . . . . . . . 14 0 < 4
4139, 40elrpii 9748 . . . . . . . . . . . . 13 4 ∈ ℝ+
4241a1i 9 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 4 ∈ ℝ+)
43 nnm1nn0 9307 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
4422, 43syl 14 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ ℕ0)
4544nn0zd 9463 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ ℤ)
4642, 45rpexpcld 10806 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (4↑(𝑘 − 1)) ∈ ℝ+)
4738, 46rerpdivcld 9820 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) ∈ ℝ)
4812ad3antrrr 492 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑒 ∈ ℝ+)
4948rpred 9788 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑒 ∈ ℝ)
501, 2, 3resqrexlemcalc3 11198 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))
5124, 22, 50syl2anc 411 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑘 − 1))))
5214ad3antrrr 492 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / 𝑒) ∈ ℝ)
5322nnred 9020 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℝ)
54 1red 8058 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 1 ∈ ℝ)
5553, 54resubcld 8424 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) ∈ ℝ)
5639a1i 9 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 4 ∈ ℝ)
5756, 44reexpcld 10799 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (4↑(𝑘 − 1)) ∈ ℝ)
5816ad3antrrr 492 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹‘1)↑2) / 𝑒) + 1) ∈ ℝ)
5919nnred 9020 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℝ)
60 simplr 528 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗)
61 eluzle 9630 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑗) → 𝑗𝑘)
6261adantl 277 . . . . . . . . . . . . . 14 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗𝑘)
6358, 59, 53, 60, 62ltletrd 8467 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑘)
6452, 54, 53ltaddsubd 8589 . . . . . . . . . . . . 13 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑘 ↔ (((𝐹‘1)↑2) / 𝑒) < (𝑘 − 1)))
6563, 64mpbid 147 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / 𝑒) < (𝑘 − 1))
66 4z 9373 . . . . . . . . . . . . . 14 4 ∈ ℤ
67 2re 9077 . . . . . . . . . . . . . . 15 2 ∈ ℝ
68 2lt4 9181 . . . . . . . . . . . . . . 15 2 < 4
6967, 39, 68ltleii 8146 . . . . . . . . . . . . . 14 2 ≤ 4
70 eluz2 9624 . . . . . . . . . . . . . 14 (4 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ≤ 4))
719, 66, 69, 70mpbir3an 1181 . . . . . . . . . . . . 13 4 ∈ (ℤ‘2)
72 bernneq3 10771 . . . . . . . . . . . . 13 ((4 ∈ (ℤ‘2) ∧ (𝑘 − 1) ∈ ℕ0) → (𝑘 − 1) < (4↑(𝑘 − 1)))
7371, 44, 72sylancr 414 . . . . . . . . . . . 12 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 − 1) < (4↑(𝑘 − 1)))
7452, 55, 57, 65, 73lttrd 8169 . . . . . . . . . . 11 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / 𝑒) < (4↑(𝑘 − 1)))
7538, 48, 46, 74ltdiv23d 9849 . . . . . . . . . 10 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹‘1)↑2) / (4↑(𝑘 − 1))) < 𝑒)
7636, 47, 49, 51, 75lelttrd 8168 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘)↑2) − 𝐴) < 𝑒)
7734, 35, 49ltsubadd2d 8587 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((((𝐹𝑘)↑2) − 𝐴) < 𝑒 ↔ ((𝐹𝑘)↑2) < (𝐴 + 𝑒)))
7876, 77mpbid 147 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘)↑2) < (𝐴 + 𝑒))
7933, 78eqbrtrd 4056 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) < (𝐴 + 𝑒))
8033, 28eqeltrd 2273 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) ∈ ℝ+)
8180rpred 9788 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) ∈ ℝ)
8281, 49readdcld 8073 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐺𝑘) + 𝑒) ∈ ℝ)
831, 2, 3resqrexlemover 11192 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 < ((𝐹𝑘)↑2))
8424, 22, 83syl2anc 411 . . . . . . . . 9 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 < ((𝐹𝑘)↑2))
8584, 33breqtrrd 4062 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 < (𝐺𝑘))
8681, 48ltaddrpd 9822 . . . . . . . 8 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) < ((𝐺𝑘) + 𝑒))
8735, 81, 82, 85, 86lttrd 8169 . . . . . . 7 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 < ((𝐺𝑘) + 𝑒))
8879, 87jca 306 . . . . . 6 (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
8988ralrimiva 2570 . . . . 5 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗) → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
9089ex 115 . . . 4 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗 → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒))))
9190reximdva 2599 . . 3 ((𝜑𝑒 ∈ ℝ+) → (∃𝑗 ∈ ℕ ((((𝐹‘1)↑2) / 𝑒) + 1) < 𝑗 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒))))
9218, 91mpd 13 . 2 ((𝜑𝑒 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
9392ralrimiva 2570 1 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) < (𝐴 + 𝑒) ∧ 𝐴 < ((𝐺𝑘) + 𝑒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wrex 2476  {csn 3623   class class class wbr 4034  cmpt 4095   × cxp 4662  wf 5255  cfv 5259  (class class class)co 5925  cmpo 5927  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   < clt 8078  cle 8079  cmin 8214   / cdiv 8716  cn 9007  2c2 9058  4c4 9060  0cn0 9266  cz 9343  cuz 9618  +crp 9745  seqcseq 10556  cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-seqfrec 10557  df-exp 10648
This theorem is referenced by:  resqrexlemsqa  11206
  Copyright terms: Public domain W3C validator