Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pigt3 | GIF version |
Description: π is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.) |
Ref | Expression |
---|---|
pigt3 | ⊢ 3 < π |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sincos6thpi 13403 | . . . . 5 ⊢ ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2)) | |
2 | 1 | simpli 110 | . . . 4 ⊢ (sin‘(π / 6)) = (1 / 2) |
3 | ax-1cn 7846 | . . . . 5 ⊢ 1 ∈ ℂ | |
4 | 2cn 8928 | . . . . . 6 ⊢ 2 ∈ ℂ | |
5 | 2ap0 8950 | . . . . . 6 ⊢ 2 # 0 | |
6 | 4, 5 | pm3.2i 270 | . . . . 5 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
7 | 3cn 8932 | . . . . . 6 ⊢ 3 ∈ ℂ | |
8 | 3ap0 8953 | . . . . . 6 ⊢ 3 # 0 | |
9 | 7, 8 | pm3.2i 270 | . . . . 5 ⊢ (3 ∈ ℂ ∧ 3 # 0) |
10 | divcanap5 8610 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ (3 ∈ ℂ ∧ 3 # 0)) → ((3 · 1) / (3 · 2)) = (1 / 2)) | |
11 | 3, 6, 9, 10 | mp3an 1327 | . . . 4 ⊢ ((3 · 1) / (3 · 2)) = (1 / 2) |
12 | 3t1e3 9012 | . . . . 5 ⊢ (3 · 1) = 3 | |
13 | 3t2e6 9013 | . . . . 5 ⊢ (3 · 2) = 6 | |
14 | 12, 13 | oveq12i 5854 | . . . 4 ⊢ ((3 · 1) / (3 · 2)) = (3 / 6) |
15 | 2, 11, 14 | 3eqtr2i 2192 | . . 3 ⊢ (sin‘(π / 6)) = (3 / 6) |
16 | pire 13347 | . . . . . . 7 ⊢ π ∈ ℝ | |
17 | 6nn 9022 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
18 | nndivre 8893 | . . . . . . 7 ⊢ ((π ∈ ℝ ∧ 6 ∈ ℕ) → (π / 6) ∈ ℝ) | |
19 | 16, 17, 18 | mp2an 423 | . . . . . 6 ⊢ (π / 6) ∈ ℝ |
20 | 6re 8938 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
21 | pipos 13349 | . . . . . . 7 ⊢ 0 < π | |
22 | 6pos 8958 | . . . . . . 7 ⊢ 0 < 6 | |
23 | 16, 20, 21, 22 | divgt0ii 8814 | . . . . . 6 ⊢ 0 < (π / 6) |
24 | 1re 7898 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
25 | pigt2lt4 13345 | . . . . . . . . . 10 ⊢ (2 < π ∧ π < 4) | |
26 | 25 | simpri 112 | . . . . . . . . 9 ⊢ π < 4 |
27 | 4re 8934 | . . . . . . . . . 10 ⊢ 4 ∈ ℝ | |
28 | 16, 27, 20, 22 | ltdiv1ii 8824 | . . . . . . . . 9 ⊢ (π < 4 ↔ (π / 6) < (4 / 6)) |
29 | 26, 28 | mpbi 144 | . . . . . . . 8 ⊢ (π / 6) < (4 / 6) |
30 | 4lt6 9037 | . . . . . . . . 9 ⊢ 4 < 6 | |
31 | 20, 22 | elrpii 9592 | . . . . . . . . . 10 ⊢ 6 ∈ ℝ+ |
32 | divlt1lt 9660 | . . . . . . . . . 10 ⊢ ((4 ∈ ℝ ∧ 6 ∈ ℝ+) → ((4 / 6) < 1 ↔ 4 < 6)) | |
33 | 27, 31, 32 | mp2an 423 | . . . . . . . . 9 ⊢ ((4 / 6) < 1 ↔ 4 < 6) |
34 | 30, 33 | mpbir 145 | . . . . . . . 8 ⊢ (4 / 6) < 1 |
35 | nndivre 8893 | . . . . . . . . . 10 ⊢ ((4 ∈ ℝ ∧ 6 ∈ ℕ) → (4 / 6) ∈ ℝ) | |
36 | 27, 17, 35 | mp2an 423 | . . . . . . . . 9 ⊢ (4 / 6) ∈ ℝ |
37 | 19, 36, 24 | lttri 8003 | . . . . . . . 8 ⊢ (((π / 6) < (4 / 6) ∧ (4 / 6) < 1) → (π / 6) < 1) |
38 | 29, 34, 37 | mp2an 423 | . . . . . . 7 ⊢ (π / 6) < 1 |
39 | 19, 24, 38 | ltleii 8001 | . . . . . 6 ⊢ (π / 6) ≤ 1 |
40 | 0xr 7945 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
41 | elioc2 9872 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1))) | |
42 | 40, 24, 41 | mp2an 423 | . . . . . 6 ⊢ ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1)) |
43 | 19, 23, 39, 42 | mpbir3an 1169 | . . . . 5 ⊢ (π / 6) ∈ (0(,]1) |
44 | sin01bnd 11698 | . . . . 5 ⊢ ((π / 6) ∈ (0(,]1) → (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6))) | |
45 | 43, 44 | ax-mp 5 | . . . 4 ⊢ (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6)) |
46 | 45 | simpri 112 | . . 3 ⊢ (sin‘(π / 6)) < (π / 6) |
47 | 15, 46 | eqbrtrri 4005 | . 2 ⊢ (3 / 6) < (π / 6) |
48 | 3re 8931 | . . 3 ⊢ 3 ∈ ℝ | |
49 | 48, 16, 20, 22 | ltdiv1ii 8824 | . 2 ⊢ (3 < π ↔ (3 / 6) < (π / 6)) |
50 | 47, 49 | mpbir 145 | 1 ⊢ 3 < π |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 ℝcr 7752 0cc0 7753 1c1 7754 · cmul 7758 ℝ*cxr 7932 < clt 7933 ≤ cle 7934 − cmin 8069 # cap 8479 / cdiv 8568 ℕcn 8857 2c2 8908 3c3 8909 4c4 8910 6c6 8912 ℝ+crp 9589 (,]cioc 9825 ↑cexp 10454 √csqrt 10938 sincsin 11585 cosccos 11586 πcpi 11588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 ax-pre-suploc 7874 ax-addf 7875 ax-mulf 7876 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-disj 3960 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-of 6050 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-map 6616 df-pm 6617 df-en 6707 df-dom 6708 df-fin 6709 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-xneg 9708 df-xadd 9709 df-ioo 9828 df-ioc 9829 df-ico 9830 df-icc 9831 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-fac 10639 df-bc 10661 df-ihash 10689 df-shft 10757 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 df-ef 11589 df-sin 11591 df-cos 11592 df-pi 11594 df-rest 12558 df-topgen 12577 df-psmet 12627 df-xmet 12628 df-met 12629 df-bl 12630 df-mopn 12631 df-top 12636 df-topon 12649 df-bases 12681 df-ntr 12736 df-cn 12828 df-cnp 12829 df-tx 12893 df-cncf 13198 df-limced 13265 df-dvap 13266 |
This theorem is referenced by: pige3 13406 |
Copyright terms: Public domain | W3C validator |