| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pigt3 | GIF version | ||
| Description: π is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| Ref | Expression |
|---|---|
| pigt3 | ⊢ 3 < π |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sincos6thpi 15510 | . . . . 5 ⊢ ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2)) | |
| 2 | 1 | simpli 111 | . . . 4 ⊢ (sin‘(π / 6)) = (1 / 2) |
| 3 | ax-1cn 8088 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 4 | 2cn 9177 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 5 | 2ap0 9199 | . . . . . 6 ⊢ 2 # 0 | |
| 6 | 4, 5 | pm3.2i 272 | . . . . 5 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
| 7 | 3cn 9181 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 8 | 3ap0 9202 | . . . . . 6 ⊢ 3 # 0 | |
| 9 | 7, 8 | pm3.2i 272 | . . . . 5 ⊢ (3 ∈ ℂ ∧ 3 # 0) |
| 10 | divcanap5 8857 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ (3 ∈ ℂ ∧ 3 # 0)) → ((3 · 1) / (3 · 2)) = (1 / 2)) | |
| 11 | 3, 6, 9, 10 | mp3an 1371 | . . . 4 ⊢ ((3 · 1) / (3 · 2)) = (1 / 2) |
| 12 | 3t1e3 9262 | . . . . 5 ⊢ (3 · 1) = 3 | |
| 13 | 3t2e6 9263 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 14 | 12, 13 | oveq12i 6012 | . . . 4 ⊢ ((3 · 1) / (3 · 2)) = (3 / 6) |
| 15 | 2, 11, 14 | 3eqtr2i 2256 | . . 3 ⊢ (sin‘(π / 6)) = (3 / 6) |
| 16 | pire 15454 | . . . . . . 7 ⊢ π ∈ ℝ | |
| 17 | 6nn 9272 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
| 18 | nndivre 9142 | . . . . . . 7 ⊢ ((π ∈ ℝ ∧ 6 ∈ ℕ) → (π / 6) ∈ ℝ) | |
| 19 | 16, 17, 18 | mp2an 426 | . . . . . 6 ⊢ (π / 6) ∈ ℝ |
| 20 | 6re 9187 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
| 21 | pipos 15456 | . . . . . . 7 ⊢ 0 < π | |
| 22 | 6pos 9207 | . . . . . . 7 ⊢ 0 < 6 | |
| 23 | 16, 20, 21, 22 | divgt0ii 9062 | . . . . . 6 ⊢ 0 < (π / 6) |
| 24 | 1re 8141 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 25 | pigt2lt4 15452 | . . . . . . . . . 10 ⊢ (2 < π ∧ π < 4) | |
| 26 | 25 | simpri 113 | . . . . . . . . 9 ⊢ π < 4 |
| 27 | 4re 9183 | . . . . . . . . . 10 ⊢ 4 ∈ ℝ | |
| 28 | 16, 27, 20, 22 | ltdiv1ii 9072 | . . . . . . . . 9 ⊢ (π < 4 ↔ (π / 6) < (4 / 6)) |
| 29 | 26, 28 | mpbi 145 | . . . . . . . 8 ⊢ (π / 6) < (4 / 6) |
| 30 | 4lt6 9287 | . . . . . . . . 9 ⊢ 4 < 6 | |
| 31 | 20, 22 | elrpii 9848 | . . . . . . . . . 10 ⊢ 6 ∈ ℝ+ |
| 32 | divlt1lt 9916 | . . . . . . . . . 10 ⊢ ((4 ∈ ℝ ∧ 6 ∈ ℝ+) → ((4 / 6) < 1 ↔ 4 < 6)) | |
| 33 | 27, 31, 32 | mp2an 426 | . . . . . . . . 9 ⊢ ((4 / 6) < 1 ↔ 4 < 6) |
| 34 | 30, 33 | mpbir 146 | . . . . . . . 8 ⊢ (4 / 6) < 1 |
| 35 | nndivre 9142 | . . . . . . . . . 10 ⊢ ((4 ∈ ℝ ∧ 6 ∈ ℕ) → (4 / 6) ∈ ℝ) | |
| 36 | 27, 17, 35 | mp2an 426 | . . . . . . . . 9 ⊢ (4 / 6) ∈ ℝ |
| 37 | 19, 36, 24 | lttri 8247 | . . . . . . . 8 ⊢ (((π / 6) < (4 / 6) ∧ (4 / 6) < 1) → (π / 6) < 1) |
| 38 | 29, 34, 37 | mp2an 426 | . . . . . . 7 ⊢ (π / 6) < 1 |
| 39 | 19, 24, 38 | ltleii 8245 | . . . . . 6 ⊢ (π / 6) ≤ 1 |
| 40 | 0xr 8189 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 41 | elioc2 10128 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1))) | |
| 42 | 40, 24, 41 | mp2an 426 | . . . . . 6 ⊢ ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1)) |
| 43 | 19, 23, 39, 42 | mpbir3an 1203 | . . . . 5 ⊢ (π / 6) ∈ (0(,]1) |
| 44 | sin01bnd 12263 | . . . . 5 ⊢ ((π / 6) ∈ (0(,]1) → (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6))) | |
| 45 | 43, 44 | ax-mp 5 | . . . 4 ⊢ (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6)) |
| 46 | 45 | simpri 113 | . . 3 ⊢ (sin‘(π / 6)) < (π / 6) |
| 47 | 15, 46 | eqbrtrri 4105 | . 2 ⊢ (3 / 6) < (π / 6) |
| 48 | 3re 9180 | . . 3 ⊢ 3 ∈ ℝ | |
| 49 | 48, 16, 20, 22 | ltdiv1ii 9072 | . 2 ⊢ (3 < π ↔ (3 / 6) < (π / 6)) |
| 50 | 47, 49 | mpbir 146 | 1 ⊢ 3 < π |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 ‘cfv 5317 (class class class)co 6000 ℂcc 7993 ℝcr 7994 0cc0 7995 1c1 7996 · cmul 8000 ℝ*cxr 8176 < clt 8177 ≤ cle 8178 − cmin 8313 # cap 8724 / cdiv 8815 ℕcn 9106 2c2 9157 3c3 9158 4c4 9159 6c6 9161 ℝ+crp 9845 (,]cioc 10081 ↑cexp 10755 √csqrt 11502 sincsin 12150 cosccos 12151 πcpi 12153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 ax-pre-suploc 8116 ax-addf 8117 ax-mulf 8118 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-disj 4059 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-of 6216 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-oadd 6564 df-er 6678 df-map 6795 df-pm 6796 df-en 6886 df-dom 6887 df-fin 6888 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-xneg 9964 df-xadd 9965 df-ioo 10084 df-ioc 10085 df-ico 10086 df-icc 10087 df-fz 10201 df-fzo 10335 df-seqfrec 10665 df-exp 10756 df-fac 10943 df-bc 10965 df-ihash 10993 df-shft 11321 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-sumdc 11860 df-ef 12154 df-sin 12156 df-cos 12157 df-pi 12159 df-rest 13269 df-topgen 13288 df-psmet 14501 df-xmet 14502 df-met 14503 df-bl 14504 df-mopn 14505 df-top 14666 df-topon 14679 df-bases 14711 df-ntr 14764 df-cn 14856 df-cnp 14857 df-tx 14921 df-cncf 15239 df-limced 15324 df-dvap 15325 |
| This theorem is referenced by: pige3 15513 |
| Copyright terms: Public domain | W3C validator |