| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pigt3 | GIF version | ||
| Description: π is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| Ref | Expression |
|---|---|
| pigt3 | ⊢ 3 < π |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sincos6thpi 15232 | . . . . 5 ⊢ ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2)) | |
| 2 | 1 | simpli 111 | . . . 4 ⊢ (sin‘(π / 6)) = (1 / 2) |
| 3 | ax-1cn 8000 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 4 | 2cn 9089 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 5 | 2ap0 9111 | . . . . . 6 ⊢ 2 # 0 | |
| 6 | 4, 5 | pm3.2i 272 | . . . . 5 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
| 7 | 3cn 9093 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 8 | 3ap0 9114 | . . . . . 6 ⊢ 3 # 0 | |
| 9 | 7, 8 | pm3.2i 272 | . . . . 5 ⊢ (3 ∈ ℂ ∧ 3 # 0) |
| 10 | divcanap5 8769 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ (3 ∈ ℂ ∧ 3 # 0)) → ((3 · 1) / (3 · 2)) = (1 / 2)) | |
| 11 | 3, 6, 9, 10 | mp3an 1349 | . . . 4 ⊢ ((3 · 1) / (3 · 2)) = (1 / 2) |
| 12 | 3t1e3 9174 | . . . . 5 ⊢ (3 · 1) = 3 | |
| 13 | 3t2e6 9175 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 14 | 12, 13 | oveq12i 5946 | . . . 4 ⊢ ((3 · 1) / (3 · 2)) = (3 / 6) |
| 15 | 2, 11, 14 | 3eqtr2i 2231 | . . 3 ⊢ (sin‘(π / 6)) = (3 / 6) |
| 16 | pire 15176 | . . . . . . 7 ⊢ π ∈ ℝ | |
| 17 | 6nn 9184 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
| 18 | nndivre 9054 | . . . . . . 7 ⊢ ((π ∈ ℝ ∧ 6 ∈ ℕ) → (π / 6) ∈ ℝ) | |
| 19 | 16, 17, 18 | mp2an 426 | . . . . . 6 ⊢ (π / 6) ∈ ℝ |
| 20 | 6re 9099 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
| 21 | pipos 15178 | . . . . . . 7 ⊢ 0 < π | |
| 22 | 6pos 9119 | . . . . . . 7 ⊢ 0 < 6 | |
| 23 | 16, 20, 21, 22 | divgt0ii 8974 | . . . . . 6 ⊢ 0 < (π / 6) |
| 24 | 1re 8053 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 25 | pigt2lt4 15174 | . . . . . . . . . 10 ⊢ (2 < π ∧ π < 4) | |
| 26 | 25 | simpri 113 | . . . . . . . . 9 ⊢ π < 4 |
| 27 | 4re 9095 | . . . . . . . . . 10 ⊢ 4 ∈ ℝ | |
| 28 | 16, 27, 20, 22 | ltdiv1ii 8984 | . . . . . . . . 9 ⊢ (π < 4 ↔ (π / 6) < (4 / 6)) |
| 29 | 26, 28 | mpbi 145 | . . . . . . . 8 ⊢ (π / 6) < (4 / 6) |
| 30 | 4lt6 9199 | . . . . . . . . 9 ⊢ 4 < 6 | |
| 31 | 20, 22 | elrpii 9760 | . . . . . . . . . 10 ⊢ 6 ∈ ℝ+ |
| 32 | divlt1lt 9828 | . . . . . . . . . 10 ⊢ ((4 ∈ ℝ ∧ 6 ∈ ℝ+) → ((4 / 6) < 1 ↔ 4 < 6)) | |
| 33 | 27, 31, 32 | mp2an 426 | . . . . . . . . 9 ⊢ ((4 / 6) < 1 ↔ 4 < 6) |
| 34 | 30, 33 | mpbir 146 | . . . . . . . 8 ⊢ (4 / 6) < 1 |
| 35 | nndivre 9054 | . . . . . . . . . 10 ⊢ ((4 ∈ ℝ ∧ 6 ∈ ℕ) → (4 / 6) ∈ ℝ) | |
| 36 | 27, 17, 35 | mp2an 426 | . . . . . . . . 9 ⊢ (4 / 6) ∈ ℝ |
| 37 | 19, 36, 24 | lttri 8159 | . . . . . . . 8 ⊢ (((π / 6) < (4 / 6) ∧ (4 / 6) < 1) → (π / 6) < 1) |
| 38 | 29, 34, 37 | mp2an 426 | . . . . . . 7 ⊢ (π / 6) < 1 |
| 39 | 19, 24, 38 | ltleii 8157 | . . . . . 6 ⊢ (π / 6) ≤ 1 |
| 40 | 0xr 8101 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 41 | elioc2 10040 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1))) | |
| 42 | 40, 24, 41 | mp2an 426 | . . . . . 6 ⊢ ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1)) |
| 43 | 19, 23, 39, 42 | mpbir3an 1181 | . . . . 5 ⊢ (π / 6) ∈ (0(,]1) |
| 44 | sin01bnd 11987 | . . . . 5 ⊢ ((π / 6) ∈ (0(,]1) → (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6))) | |
| 45 | 43, 44 | ax-mp 5 | . . . 4 ⊢ (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6)) |
| 46 | 45 | simpri 113 | . . 3 ⊢ (sin‘(π / 6)) < (π / 6) |
| 47 | 15, 46 | eqbrtrri 4066 | . 2 ⊢ (3 / 6) < (π / 6) |
| 48 | 3re 9092 | . . 3 ⊢ 3 ∈ ℝ | |
| 49 | 48, 16, 20, 22 | ltdiv1ii 8984 | . 2 ⊢ (3 < π ↔ (3 / 6) < (π / 6)) |
| 50 | 47, 49 | mpbir 146 | 1 ⊢ 3 < π |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 ‘cfv 5268 (class class class)co 5934 ℂcc 7905 ℝcr 7906 0cc0 7907 1c1 7908 · cmul 7912 ℝ*cxr 8088 < clt 8089 ≤ cle 8090 − cmin 8225 # cap 8636 / cdiv 8727 ℕcn 9018 2c2 9069 3c3 9070 4c4 9071 6c6 9073 ℝ+crp 9757 (,]cioc 9993 ↑cexp 10664 √csqrt 11226 sincsin 11874 cosccos 11875 πcpi 11877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 ax-caucvg 8027 ax-pre-suploc 8028 ax-addf 8029 ax-mulf 8030 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-disj 4021 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-isom 5277 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-of 6148 df-1st 6216 df-2nd 6217 df-recs 6381 df-irdg 6446 df-frec 6467 df-1o 6492 df-oadd 6496 df-er 6610 df-map 6727 df-pm 6728 df-en 6818 df-dom 6819 df-fin 6820 df-sup 7068 df-inf 7069 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-7 9082 df-8 9083 df-9 9084 df-n0 9278 df-z 9355 df-uz 9631 df-q 9723 df-rp 9758 df-xneg 9876 df-xadd 9877 df-ioo 9996 df-ioc 9997 df-ico 9998 df-icc 9999 df-fz 10113 df-fzo 10247 df-seqfrec 10574 df-exp 10665 df-fac 10852 df-bc 10874 df-ihash 10902 df-shft 11045 df-cj 11072 df-re 11073 df-im 11074 df-rsqrt 11228 df-abs 11229 df-clim 11509 df-sumdc 11584 df-ef 11878 df-sin 11880 df-cos 11881 df-pi 11883 df-rest 12991 df-topgen 13010 df-psmet 14223 df-xmet 14224 df-met 14225 df-bl 14226 df-mopn 14227 df-top 14388 df-topon 14401 df-bases 14433 df-ntr 14486 df-cn 14578 df-cnp 14579 df-tx 14643 df-cncf 14961 df-limced 15046 df-dvap 15047 |
| This theorem is referenced by: pige3 15235 |
| Copyright terms: Public domain | W3C validator |