ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pigt3 GIF version

Theorem pigt3 15391
Description: π is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.)
Assertion
Ref Expression
pigt3 3 < π

Proof of Theorem pigt3
StepHypRef Expression
1 sincos6thpi 15389 . . . . 5 ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2))
21simpli 111 . . . 4 (sin‘(π / 6)) = (1 / 2)
3 ax-1cn 8038 . . . . 5 1 ∈ ℂ
4 2cn 9127 . . . . . 6 2 ∈ ℂ
5 2ap0 9149 . . . . . 6 2 # 0
64, 5pm3.2i 272 . . . . 5 (2 ∈ ℂ ∧ 2 # 0)
7 3cn 9131 . . . . . 6 3 ∈ ℂ
8 3ap0 9152 . . . . . 6 3 # 0
97, 8pm3.2i 272 . . . . 5 (3 ∈ ℂ ∧ 3 # 0)
10 divcanap5 8807 . . . . 5 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ (3 ∈ ℂ ∧ 3 # 0)) → ((3 · 1) / (3 · 2)) = (1 / 2))
113, 6, 9, 10mp3an 1350 . . . 4 ((3 · 1) / (3 · 2)) = (1 / 2)
12 3t1e3 9212 . . . . 5 (3 · 1) = 3
13 3t2e6 9213 . . . . 5 (3 · 2) = 6
1412, 13oveq12i 5969 . . . 4 ((3 · 1) / (3 · 2)) = (3 / 6)
152, 11, 143eqtr2i 2233 . . 3 (sin‘(π / 6)) = (3 / 6)
16 pire 15333 . . . . . . 7 π ∈ ℝ
17 6nn 9222 . . . . . . 7 6 ∈ ℕ
18 nndivre 9092 . . . . . . 7 ((π ∈ ℝ ∧ 6 ∈ ℕ) → (π / 6) ∈ ℝ)
1916, 17, 18mp2an 426 . . . . . 6 (π / 6) ∈ ℝ
20 6re 9137 . . . . . . 7 6 ∈ ℝ
21 pipos 15335 . . . . . . 7 0 < π
22 6pos 9157 . . . . . . 7 0 < 6
2316, 20, 21, 22divgt0ii 9012 . . . . . 6 0 < (π / 6)
24 1re 8091 . . . . . . 7 1 ∈ ℝ
25 pigt2lt4 15331 . . . . . . . . . 10 (2 < π ∧ π < 4)
2625simpri 113 . . . . . . . . 9 π < 4
27 4re 9133 . . . . . . . . . 10 4 ∈ ℝ
2816, 27, 20, 22ltdiv1ii 9022 . . . . . . . . 9 (π < 4 ↔ (π / 6) < (4 / 6))
2926, 28mpbi 145 . . . . . . . 8 (π / 6) < (4 / 6)
30 4lt6 9237 . . . . . . . . 9 4 < 6
3120, 22elrpii 9798 . . . . . . . . . 10 6 ∈ ℝ+
32 divlt1lt 9866 . . . . . . . . . 10 ((4 ∈ ℝ ∧ 6 ∈ ℝ+) → ((4 / 6) < 1 ↔ 4 < 6))
3327, 31, 32mp2an 426 . . . . . . . . 9 ((4 / 6) < 1 ↔ 4 < 6)
3430, 33mpbir 146 . . . . . . . 8 (4 / 6) < 1
35 nndivre 9092 . . . . . . . . . 10 ((4 ∈ ℝ ∧ 6 ∈ ℕ) → (4 / 6) ∈ ℝ)
3627, 17, 35mp2an 426 . . . . . . . . 9 (4 / 6) ∈ ℝ
3719, 36, 24lttri 8197 . . . . . . . 8 (((π / 6) < (4 / 6) ∧ (4 / 6) < 1) → (π / 6) < 1)
3829, 34, 37mp2an 426 . . . . . . 7 (π / 6) < 1
3919, 24, 38ltleii 8195 . . . . . 6 (π / 6) ≤ 1
40 0xr 8139 . . . . . . 7 0 ∈ ℝ*
41 elioc2 10078 . . . . . . 7 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1)))
4240, 24, 41mp2an 426 . . . . . 6 ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1))
4319, 23, 39, 42mpbir3an 1182 . . . . 5 (π / 6) ∈ (0(,]1)
44 sin01bnd 12143 . . . . 5 ((π / 6) ∈ (0(,]1) → (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6)))
4543, 44ax-mp 5 . . . 4 (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6))
4645simpri 113 . . 3 (sin‘(π / 6)) < (π / 6)
4715, 46eqbrtrri 4074 . 2 (3 / 6) < (π / 6)
48 3re 9130 . . 3 3 ∈ ℝ
4948, 16, 20, 22ltdiv1ii 9022 . 2 (3 < π ↔ (3 / 6) < (π / 6))
5047, 49mpbir 146 1 3 < π
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4051  cfv 5280  (class class class)co 5957  cc 7943  cr 7944  0cc0 7945  1c1 7946   · cmul 7950  *cxr 8126   < clt 8127  cle 8128  cmin 8263   # cap 8674   / cdiv 8765  cn 9056  2c2 9107  3c3 9108  4c4 9109  6c6 9111  +crp 9795  (,]cioc 10031  cexp 10705  csqrt 11382  sincsin 12030  cosccos 12031  πcpi 12033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065  ax-pre-suploc 8066  ax-addf 8067  ax-mulf 8068
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-disj 4028  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-of 6171  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-map 6750  df-pm 6751  df-en 6841  df-dom 6842  df-fin 6843  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-9 9122  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-xneg 9914  df-xadd 9915  df-ioo 10034  df-ioc 10035  df-ico 10036  df-icc 10037  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-fac 10893  df-bc 10915  df-ihash 10943  df-shft 11201  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-sumdc 11740  df-ef 12034  df-sin 12036  df-cos 12037  df-pi 12039  df-rest 13148  df-topgen 13167  df-psmet 14380  df-xmet 14381  df-met 14382  df-bl 14383  df-mopn 14384  df-top 14545  df-topon 14558  df-bases 14590  df-ntr 14643  df-cn 14735  df-cnp 14736  df-tx 14800  df-cncf 15118  df-limced 15203  df-dvap 15204
This theorem is referenced by:  pige3  15392
  Copyright terms: Public domain W3C validator