![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pigt3 | GIF version |
Description: π is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.) |
Ref | Expression |
---|---|
pigt3 | ⊢ 3 < π |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sincos6thpi 14977 | . . . . 5 ⊢ ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2)) | |
2 | 1 | simpli 111 | . . . 4 ⊢ (sin‘(π / 6)) = (1 / 2) |
3 | ax-1cn 7965 | . . . . 5 ⊢ 1 ∈ ℂ | |
4 | 2cn 9053 | . . . . . 6 ⊢ 2 ∈ ℂ | |
5 | 2ap0 9075 | . . . . . 6 ⊢ 2 # 0 | |
6 | 4, 5 | pm3.2i 272 | . . . . 5 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
7 | 3cn 9057 | . . . . . 6 ⊢ 3 ∈ ℂ | |
8 | 3ap0 9078 | . . . . . 6 ⊢ 3 # 0 | |
9 | 7, 8 | pm3.2i 272 | . . . . 5 ⊢ (3 ∈ ℂ ∧ 3 # 0) |
10 | divcanap5 8733 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ (3 ∈ ℂ ∧ 3 # 0)) → ((3 · 1) / (3 · 2)) = (1 / 2)) | |
11 | 3, 6, 9, 10 | mp3an 1348 | . . . 4 ⊢ ((3 · 1) / (3 · 2)) = (1 / 2) |
12 | 3t1e3 9137 | . . . . 5 ⊢ (3 · 1) = 3 | |
13 | 3t2e6 9138 | . . . . 5 ⊢ (3 · 2) = 6 | |
14 | 12, 13 | oveq12i 5930 | . . . 4 ⊢ ((3 · 1) / (3 · 2)) = (3 / 6) |
15 | 2, 11, 14 | 3eqtr2i 2220 | . . 3 ⊢ (sin‘(π / 6)) = (3 / 6) |
16 | pire 14921 | . . . . . . 7 ⊢ π ∈ ℝ | |
17 | 6nn 9147 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
18 | nndivre 9018 | . . . . . . 7 ⊢ ((π ∈ ℝ ∧ 6 ∈ ℕ) → (π / 6) ∈ ℝ) | |
19 | 16, 17, 18 | mp2an 426 | . . . . . 6 ⊢ (π / 6) ∈ ℝ |
20 | 6re 9063 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
21 | pipos 14923 | . . . . . . 7 ⊢ 0 < π | |
22 | 6pos 9083 | . . . . . . 7 ⊢ 0 < 6 | |
23 | 16, 20, 21, 22 | divgt0ii 8938 | . . . . . 6 ⊢ 0 < (π / 6) |
24 | 1re 8018 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
25 | pigt2lt4 14919 | . . . . . . . . . 10 ⊢ (2 < π ∧ π < 4) | |
26 | 25 | simpri 113 | . . . . . . . . 9 ⊢ π < 4 |
27 | 4re 9059 | . . . . . . . . . 10 ⊢ 4 ∈ ℝ | |
28 | 16, 27, 20, 22 | ltdiv1ii 8948 | . . . . . . . . 9 ⊢ (π < 4 ↔ (π / 6) < (4 / 6)) |
29 | 26, 28 | mpbi 145 | . . . . . . . 8 ⊢ (π / 6) < (4 / 6) |
30 | 4lt6 9162 | . . . . . . . . 9 ⊢ 4 < 6 | |
31 | 20, 22 | elrpii 9722 | . . . . . . . . . 10 ⊢ 6 ∈ ℝ+ |
32 | divlt1lt 9790 | . . . . . . . . . 10 ⊢ ((4 ∈ ℝ ∧ 6 ∈ ℝ+) → ((4 / 6) < 1 ↔ 4 < 6)) | |
33 | 27, 31, 32 | mp2an 426 | . . . . . . . . 9 ⊢ ((4 / 6) < 1 ↔ 4 < 6) |
34 | 30, 33 | mpbir 146 | . . . . . . . 8 ⊢ (4 / 6) < 1 |
35 | nndivre 9018 | . . . . . . . . . 10 ⊢ ((4 ∈ ℝ ∧ 6 ∈ ℕ) → (4 / 6) ∈ ℝ) | |
36 | 27, 17, 35 | mp2an 426 | . . . . . . . . 9 ⊢ (4 / 6) ∈ ℝ |
37 | 19, 36, 24 | lttri 8124 | . . . . . . . 8 ⊢ (((π / 6) < (4 / 6) ∧ (4 / 6) < 1) → (π / 6) < 1) |
38 | 29, 34, 37 | mp2an 426 | . . . . . . 7 ⊢ (π / 6) < 1 |
39 | 19, 24, 38 | ltleii 8122 | . . . . . 6 ⊢ (π / 6) ≤ 1 |
40 | 0xr 8066 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
41 | elioc2 10002 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1))) | |
42 | 40, 24, 41 | mp2an 426 | . . . . . 6 ⊢ ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1)) |
43 | 19, 23, 39, 42 | mpbir3an 1181 | . . . . 5 ⊢ (π / 6) ∈ (0(,]1) |
44 | sin01bnd 11900 | . . . . 5 ⊢ ((π / 6) ∈ (0(,]1) → (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6))) | |
45 | 43, 44 | ax-mp 5 | . . . 4 ⊢ (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6)) |
46 | 45 | simpri 113 | . . 3 ⊢ (sin‘(π / 6)) < (π / 6) |
47 | 15, 46 | eqbrtrri 4052 | . 2 ⊢ (3 / 6) < (π / 6) |
48 | 3re 9056 | . . 3 ⊢ 3 ∈ ℝ | |
49 | 48, 16, 20, 22 | ltdiv1ii 8948 | . 2 ⊢ (3 < π ↔ (3 / 6) < (π / 6)) |
50 | 47, 49 | mpbir 146 | 1 ⊢ 3 < π |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 ℝcr 7871 0cc0 7872 1c1 7873 · cmul 7877 ℝ*cxr 8053 < clt 8054 ≤ cle 8055 − cmin 8190 # cap 8600 / cdiv 8691 ℕcn 8982 2c2 9033 3c3 9034 4c4 9035 6c6 9037 ℝ+crp 9719 (,]cioc 9955 ↑cexp 10609 √csqrt 11140 sincsin 11787 cosccos 11788 πcpi 11790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 ax-pre-suploc 7993 ax-addf 7994 ax-mulf 7995 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-disj 4007 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-of 6130 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-map 6704 df-pm 6705 df-en 6795 df-dom 6796 df-fin 6797 df-sup 7043 df-inf 7044 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-xneg 9838 df-xadd 9839 df-ioo 9958 df-ioc 9959 df-ico 9960 df-icc 9961 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-fac 10797 df-bc 10819 df-ihash 10847 df-shft 10959 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-sumdc 11497 df-ef 11791 df-sin 11793 df-cos 11794 df-pi 11796 df-rest 12852 df-topgen 12871 df-psmet 14039 df-xmet 14040 df-met 14041 df-bl 14042 df-mopn 14043 df-top 14166 df-topon 14179 df-bases 14211 df-ntr 14264 df-cn 14356 df-cnp 14357 df-tx 14421 df-cncf 14726 df-limced 14810 df-dvap 14811 |
This theorem is referenced by: pige3 14980 |
Copyright terms: Public domain | W3C validator |