ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pigt3 GIF version

Theorem pigt3 13405
Description: π is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.)
Assertion
Ref Expression
pigt3 3 < π

Proof of Theorem pigt3
StepHypRef Expression
1 sincos6thpi 13403 . . . . 5 ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2))
21simpli 110 . . . 4 (sin‘(π / 6)) = (1 / 2)
3 ax-1cn 7846 . . . . 5 1 ∈ ℂ
4 2cn 8928 . . . . . 6 2 ∈ ℂ
5 2ap0 8950 . . . . . 6 2 # 0
64, 5pm3.2i 270 . . . . 5 (2 ∈ ℂ ∧ 2 # 0)
7 3cn 8932 . . . . . 6 3 ∈ ℂ
8 3ap0 8953 . . . . . 6 3 # 0
97, 8pm3.2i 270 . . . . 5 (3 ∈ ℂ ∧ 3 # 0)
10 divcanap5 8610 . . . . 5 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ (3 ∈ ℂ ∧ 3 # 0)) → ((3 · 1) / (3 · 2)) = (1 / 2))
113, 6, 9, 10mp3an 1327 . . . 4 ((3 · 1) / (3 · 2)) = (1 / 2)
12 3t1e3 9012 . . . . 5 (3 · 1) = 3
13 3t2e6 9013 . . . . 5 (3 · 2) = 6
1412, 13oveq12i 5854 . . . 4 ((3 · 1) / (3 · 2)) = (3 / 6)
152, 11, 143eqtr2i 2192 . . 3 (sin‘(π / 6)) = (3 / 6)
16 pire 13347 . . . . . . 7 π ∈ ℝ
17 6nn 9022 . . . . . . 7 6 ∈ ℕ
18 nndivre 8893 . . . . . . 7 ((π ∈ ℝ ∧ 6 ∈ ℕ) → (π / 6) ∈ ℝ)
1916, 17, 18mp2an 423 . . . . . 6 (π / 6) ∈ ℝ
20 6re 8938 . . . . . . 7 6 ∈ ℝ
21 pipos 13349 . . . . . . 7 0 < π
22 6pos 8958 . . . . . . 7 0 < 6
2316, 20, 21, 22divgt0ii 8814 . . . . . 6 0 < (π / 6)
24 1re 7898 . . . . . . 7 1 ∈ ℝ
25 pigt2lt4 13345 . . . . . . . . . 10 (2 < π ∧ π < 4)
2625simpri 112 . . . . . . . . 9 π < 4
27 4re 8934 . . . . . . . . . 10 4 ∈ ℝ
2816, 27, 20, 22ltdiv1ii 8824 . . . . . . . . 9 (π < 4 ↔ (π / 6) < (4 / 6))
2926, 28mpbi 144 . . . . . . . 8 (π / 6) < (4 / 6)
30 4lt6 9037 . . . . . . . . 9 4 < 6
3120, 22elrpii 9592 . . . . . . . . . 10 6 ∈ ℝ+
32 divlt1lt 9660 . . . . . . . . . 10 ((4 ∈ ℝ ∧ 6 ∈ ℝ+) → ((4 / 6) < 1 ↔ 4 < 6))
3327, 31, 32mp2an 423 . . . . . . . . 9 ((4 / 6) < 1 ↔ 4 < 6)
3430, 33mpbir 145 . . . . . . . 8 (4 / 6) < 1
35 nndivre 8893 . . . . . . . . . 10 ((4 ∈ ℝ ∧ 6 ∈ ℕ) → (4 / 6) ∈ ℝ)
3627, 17, 35mp2an 423 . . . . . . . . 9 (4 / 6) ∈ ℝ
3719, 36, 24lttri 8003 . . . . . . . 8 (((π / 6) < (4 / 6) ∧ (4 / 6) < 1) → (π / 6) < 1)
3829, 34, 37mp2an 423 . . . . . . 7 (π / 6) < 1
3919, 24, 38ltleii 8001 . . . . . 6 (π / 6) ≤ 1
40 0xr 7945 . . . . . . 7 0 ∈ ℝ*
41 elioc2 9872 . . . . . . 7 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1)))
4240, 24, 41mp2an 423 . . . . . 6 ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1))
4319, 23, 39, 42mpbir3an 1169 . . . . 5 (π / 6) ∈ (0(,]1)
44 sin01bnd 11698 . . . . 5 ((π / 6) ∈ (0(,]1) → (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6)))
4543, 44ax-mp 5 . . . 4 (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6))
4645simpri 112 . . 3 (sin‘(π / 6)) < (π / 6)
4715, 46eqbrtrri 4005 . 2 (3 / 6) < (π / 6)
48 3re 8931 . . 3 3 ∈ ℝ
4948, 16, 20, 22ltdiv1ii 8824 . 2 (3 < π ↔ (3 / 6) < (π / 6))
5047, 49mpbir 145 1 3 < π
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   · cmul 7758  *cxr 7932   < clt 7933  cle 7934  cmin 8069   # cap 8479   / cdiv 8568  cn 8857  2c2 8908  3c3 8909  4c4 8910  6c6 8912  +crp 9589  (,]cioc 9825  cexp 10454  csqrt 10938  sincsin 11585  cosccos 11586  πcpi 11588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-pre-suploc 7874  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-map 6616  df-pm 6617  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ioo 9828  df-ioc 9829  df-ico 9830  df-icc 9831  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-sin 11591  df-cos 11592  df-pi 11594  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-tx 12893  df-cncf 13198  df-limced 13265  df-dvap 13266
This theorem is referenced by:  pige3  13406
  Copyright terms: Public domain W3C validator