| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pigt3 | GIF version | ||
| Description: π is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| Ref | Expression |
|---|---|
| pigt3 | ⊢ 3 < π |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sincos6thpi 15256 | . . . . 5 ⊢ ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2)) | |
| 2 | 1 | simpli 111 | . . . 4 ⊢ (sin‘(π / 6)) = (1 / 2) |
| 3 | ax-1cn 8017 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 4 | 2cn 9106 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 5 | 2ap0 9128 | . . . . . 6 ⊢ 2 # 0 | |
| 6 | 4, 5 | pm3.2i 272 | . . . . 5 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
| 7 | 3cn 9110 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 8 | 3ap0 9131 | . . . . . 6 ⊢ 3 # 0 | |
| 9 | 7, 8 | pm3.2i 272 | . . . . 5 ⊢ (3 ∈ ℂ ∧ 3 # 0) |
| 10 | divcanap5 8786 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ (3 ∈ ℂ ∧ 3 # 0)) → ((3 · 1) / (3 · 2)) = (1 / 2)) | |
| 11 | 3, 6, 9, 10 | mp3an 1349 | . . . 4 ⊢ ((3 · 1) / (3 · 2)) = (1 / 2) |
| 12 | 3t1e3 9191 | . . . . 5 ⊢ (3 · 1) = 3 | |
| 13 | 3t2e6 9192 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 14 | 12, 13 | oveq12i 5955 | . . . 4 ⊢ ((3 · 1) / (3 · 2)) = (3 / 6) |
| 15 | 2, 11, 14 | 3eqtr2i 2231 | . . 3 ⊢ (sin‘(π / 6)) = (3 / 6) |
| 16 | pire 15200 | . . . . . . 7 ⊢ π ∈ ℝ | |
| 17 | 6nn 9201 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
| 18 | nndivre 9071 | . . . . . . 7 ⊢ ((π ∈ ℝ ∧ 6 ∈ ℕ) → (π / 6) ∈ ℝ) | |
| 19 | 16, 17, 18 | mp2an 426 | . . . . . 6 ⊢ (π / 6) ∈ ℝ |
| 20 | 6re 9116 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
| 21 | pipos 15202 | . . . . . . 7 ⊢ 0 < π | |
| 22 | 6pos 9136 | . . . . . . 7 ⊢ 0 < 6 | |
| 23 | 16, 20, 21, 22 | divgt0ii 8991 | . . . . . 6 ⊢ 0 < (π / 6) |
| 24 | 1re 8070 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 25 | pigt2lt4 15198 | . . . . . . . . . 10 ⊢ (2 < π ∧ π < 4) | |
| 26 | 25 | simpri 113 | . . . . . . . . 9 ⊢ π < 4 |
| 27 | 4re 9112 | . . . . . . . . . 10 ⊢ 4 ∈ ℝ | |
| 28 | 16, 27, 20, 22 | ltdiv1ii 9001 | . . . . . . . . 9 ⊢ (π < 4 ↔ (π / 6) < (4 / 6)) |
| 29 | 26, 28 | mpbi 145 | . . . . . . . 8 ⊢ (π / 6) < (4 / 6) |
| 30 | 4lt6 9216 | . . . . . . . . 9 ⊢ 4 < 6 | |
| 31 | 20, 22 | elrpii 9777 | . . . . . . . . . 10 ⊢ 6 ∈ ℝ+ |
| 32 | divlt1lt 9845 | . . . . . . . . . 10 ⊢ ((4 ∈ ℝ ∧ 6 ∈ ℝ+) → ((4 / 6) < 1 ↔ 4 < 6)) | |
| 33 | 27, 31, 32 | mp2an 426 | . . . . . . . . 9 ⊢ ((4 / 6) < 1 ↔ 4 < 6) |
| 34 | 30, 33 | mpbir 146 | . . . . . . . 8 ⊢ (4 / 6) < 1 |
| 35 | nndivre 9071 | . . . . . . . . . 10 ⊢ ((4 ∈ ℝ ∧ 6 ∈ ℕ) → (4 / 6) ∈ ℝ) | |
| 36 | 27, 17, 35 | mp2an 426 | . . . . . . . . 9 ⊢ (4 / 6) ∈ ℝ |
| 37 | 19, 36, 24 | lttri 8176 | . . . . . . . 8 ⊢ (((π / 6) < (4 / 6) ∧ (4 / 6) < 1) → (π / 6) < 1) |
| 38 | 29, 34, 37 | mp2an 426 | . . . . . . 7 ⊢ (π / 6) < 1 |
| 39 | 19, 24, 38 | ltleii 8174 | . . . . . 6 ⊢ (π / 6) ≤ 1 |
| 40 | 0xr 8118 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 41 | elioc2 10057 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1))) | |
| 42 | 40, 24, 41 | mp2an 426 | . . . . . 6 ⊢ ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1)) |
| 43 | 19, 23, 39, 42 | mpbir3an 1181 | . . . . 5 ⊢ (π / 6) ∈ (0(,]1) |
| 44 | sin01bnd 12010 | . . . . 5 ⊢ ((π / 6) ∈ (0(,]1) → (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6))) | |
| 45 | 43, 44 | ax-mp 5 | . . . 4 ⊢ (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6)) |
| 46 | 45 | simpri 113 | . . 3 ⊢ (sin‘(π / 6)) < (π / 6) |
| 47 | 15, 46 | eqbrtrri 4066 | . 2 ⊢ (3 / 6) < (π / 6) |
| 48 | 3re 9109 | . . 3 ⊢ 3 ∈ ℝ | |
| 49 | 48, 16, 20, 22 | ltdiv1ii 9001 | . 2 ⊢ (3 < π ↔ (3 / 6) < (π / 6)) |
| 50 | 47, 49 | mpbir 146 | 1 ⊢ 3 < π |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 ‘cfv 5270 (class class class)co 5943 ℂcc 7922 ℝcr 7923 0cc0 7924 1c1 7925 · cmul 7929 ℝ*cxr 8105 < clt 8106 ≤ cle 8107 − cmin 8242 # cap 8653 / cdiv 8744 ℕcn 9035 2c2 9086 3c3 9087 4c4 9088 6c6 9090 ℝ+crp 9774 (,]cioc 10010 ↑cexp 10681 √csqrt 11249 sincsin 11897 cosccos 11898 πcpi 11900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 ax-pre-suploc 8045 ax-addf 8046 ax-mulf 8047 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-disj 4021 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-of 6157 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-map 6736 df-pm 6737 df-en 6827 df-dom 6828 df-fin 6829 df-sup 7085 df-inf 7086 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-xneg 9893 df-xadd 9894 df-ioo 10013 df-ioc 10014 df-ico 10015 df-icc 10016 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-fac 10869 df-bc 10891 df-ihash 10919 df-shft 11068 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-clim 11532 df-sumdc 11607 df-ef 11901 df-sin 11903 df-cos 11904 df-pi 11906 df-rest 13015 df-topgen 13034 df-psmet 14247 df-xmet 14248 df-met 14249 df-bl 14250 df-mopn 14251 df-top 14412 df-topon 14425 df-bases 14457 df-ntr 14510 df-cn 14602 df-cnp 14603 df-tx 14667 df-cncf 14985 df-limced 15070 df-dvap 15071 |
| This theorem is referenced by: pige3 15259 |
| Copyright terms: Public domain | W3C validator |