| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pigt3 | GIF version | ||
| Description: π is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| Ref | Expression |
|---|---|
| pigt3 | ⊢ 3 < π |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sincos6thpi 15162 | . . . . 5 ⊢ ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2)) | |
| 2 | 1 | simpli 111 | . . . 4 ⊢ (sin‘(π / 6)) = (1 / 2) |
| 3 | ax-1cn 7989 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 4 | 2cn 9078 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 5 | 2ap0 9100 | . . . . . 6 ⊢ 2 # 0 | |
| 6 | 4, 5 | pm3.2i 272 | . . . . 5 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
| 7 | 3cn 9082 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 8 | 3ap0 9103 | . . . . . 6 ⊢ 3 # 0 | |
| 9 | 7, 8 | pm3.2i 272 | . . . . 5 ⊢ (3 ∈ ℂ ∧ 3 # 0) |
| 10 | divcanap5 8758 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ (3 ∈ ℂ ∧ 3 # 0)) → ((3 · 1) / (3 · 2)) = (1 / 2)) | |
| 11 | 3, 6, 9, 10 | mp3an 1348 | . . . 4 ⊢ ((3 · 1) / (3 · 2)) = (1 / 2) |
| 12 | 3t1e3 9163 | . . . . 5 ⊢ (3 · 1) = 3 | |
| 13 | 3t2e6 9164 | . . . . 5 ⊢ (3 · 2) = 6 | |
| 14 | 12, 13 | oveq12i 5937 | . . . 4 ⊢ ((3 · 1) / (3 · 2)) = (3 / 6) |
| 15 | 2, 11, 14 | 3eqtr2i 2223 | . . 3 ⊢ (sin‘(π / 6)) = (3 / 6) |
| 16 | pire 15106 | . . . . . . 7 ⊢ π ∈ ℝ | |
| 17 | 6nn 9173 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
| 18 | nndivre 9043 | . . . . . . 7 ⊢ ((π ∈ ℝ ∧ 6 ∈ ℕ) → (π / 6) ∈ ℝ) | |
| 19 | 16, 17, 18 | mp2an 426 | . . . . . 6 ⊢ (π / 6) ∈ ℝ |
| 20 | 6re 9088 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
| 21 | pipos 15108 | . . . . . . 7 ⊢ 0 < π | |
| 22 | 6pos 9108 | . . . . . . 7 ⊢ 0 < 6 | |
| 23 | 16, 20, 21, 22 | divgt0ii 8963 | . . . . . 6 ⊢ 0 < (π / 6) |
| 24 | 1re 8042 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 25 | pigt2lt4 15104 | . . . . . . . . . 10 ⊢ (2 < π ∧ π < 4) | |
| 26 | 25 | simpri 113 | . . . . . . . . 9 ⊢ π < 4 |
| 27 | 4re 9084 | . . . . . . . . . 10 ⊢ 4 ∈ ℝ | |
| 28 | 16, 27, 20, 22 | ltdiv1ii 8973 | . . . . . . . . 9 ⊢ (π < 4 ↔ (π / 6) < (4 / 6)) |
| 29 | 26, 28 | mpbi 145 | . . . . . . . 8 ⊢ (π / 6) < (4 / 6) |
| 30 | 4lt6 9188 | . . . . . . . . 9 ⊢ 4 < 6 | |
| 31 | 20, 22 | elrpii 9748 | . . . . . . . . . 10 ⊢ 6 ∈ ℝ+ |
| 32 | divlt1lt 9816 | . . . . . . . . . 10 ⊢ ((4 ∈ ℝ ∧ 6 ∈ ℝ+) → ((4 / 6) < 1 ↔ 4 < 6)) | |
| 33 | 27, 31, 32 | mp2an 426 | . . . . . . . . 9 ⊢ ((4 / 6) < 1 ↔ 4 < 6) |
| 34 | 30, 33 | mpbir 146 | . . . . . . . 8 ⊢ (4 / 6) < 1 |
| 35 | nndivre 9043 | . . . . . . . . . 10 ⊢ ((4 ∈ ℝ ∧ 6 ∈ ℕ) → (4 / 6) ∈ ℝ) | |
| 36 | 27, 17, 35 | mp2an 426 | . . . . . . . . 9 ⊢ (4 / 6) ∈ ℝ |
| 37 | 19, 36, 24 | lttri 8148 | . . . . . . . 8 ⊢ (((π / 6) < (4 / 6) ∧ (4 / 6) < 1) → (π / 6) < 1) |
| 38 | 29, 34, 37 | mp2an 426 | . . . . . . 7 ⊢ (π / 6) < 1 |
| 39 | 19, 24, 38 | ltleii 8146 | . . . . . 6 ⊢ (π / 6) ≤ 1 |
| 40 | 0xr 8090 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 41 | elioc2 10028 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1))) | |
| 42 | 40, 24, 41 | mp2an 426 | . . . . . 6 ⊢ ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1)) |
| 43 | 19, 23, 39, 42 | mpbir3an 1181 | . . . . 5 ⊢ (π / 6) ∈ (0(,]1) |
| 44 | sin01bnd 11939 | . . . . 5 ⊢ ((π / 6) ∈ (0(,]1) → (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6))) | |
| 45 | 43, 44 | ax-mp 5 | . . . 4 ⊢ (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6)) |
| 46 | 45 | simpri 113 | . . 3 ⊢ (sin‘(π / 6)) < (π / 6) |
| 47 | 15, 46 | eqbrtrri 4057 | . 2 ⊢ (3 / 6) < (π / 6) |
| 48 | 3re 9081 | . . 3 ⊢ 3 ∈ ℝ | |
| 49 | 48, 16, 20, 22 | ltdiv1ii 8973 | . 2 ⊢ (3 < π ↔ (3 / 6) < (π / 6)) |
| 50 | 47, 49 | mpbir 146 | 1 ⊢ 3 < π |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 ℂcc 7894 ℝcr 7895 0cc0 7896 1c1 7897 · cmul 7901 ℝ*cxr 8077 < clt 8078 ≤ cle 8079 − cmin 8214 # cap 8625 / cdiv 8716 ℕcn 9007 2c2 9058 3c3 9059 4c4 9060 6c6 9062 ℝ+crp 9745 (,]cioc 9981 ↑cexp 10647 √csqrt 11178 sincsin 11826 cosccos 11827 πcpi 11829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 ax-pre-suploc 8017 ax-addf 8018 ax-mulf 8019 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-disj 4012 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-map 6718 df-pm 6719 df-en 6809 df-dom 6810 df-fin 6811 df-sup 7059 df-inf 7060 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-xneg 9864 df-xadd 9865 df-ioo 9984 df-ioc 9985 df-ico 9986 df-icc 9987 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-fac 10835 df-bc 10857 df-ihash 10885 df-shft 10997 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-sumdc 11536 df-ef 11830 df-sin 11832 df-cos 11833 df-pi 11835 df-rest 12943 df-topgen 12962 df-psmet 14175 df-xmet 14176 df-met 14177 df-bl 14178 df-mopn 14179 df-top 14318 df-topon 14331 df-bases 14363 df-ntr 14416 df-cn 14508 df-cnp 14509 df-tx 14573 df-cncf 14891 df-limced 14976 df-dvap 14977 |
| This theorem is referenced by: pige3 15165 |
| Copyright terms: Public domain | W3C validator |