![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pigt3 | GIF version |
Description: π is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.) |
Ref | Expression |
---|---|
pigt3 | ⊢ 3 < π |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sincos6thpi 15018 | . . . . 5 ⊢ ((sin‘(π / 6)) = (1 / 2) ∧ (cos‘(π / 6)) = ((√‘3) / 2)) | |
2 | 1 | simpli 111 | . . . 4 ⊢ (sin‘(π / 6)) = (1 / 2) |
3 | ax-1cn 7967 | . . . . 5 ⊢ 1 ∈ ℂ | |
4 | 2cn 9055 | . . . . . 6 ⊢ 2 ∈ ℂ | |
5 | 2ap0 9077 | . . . . . 6 ⊢ 2 # 0 | |
6 | 4, 5 | pm3.2i 272 | . . . . 5 ⊢ (2 ∈ ℂ ∧ 2 # 0) |
7 | 3cn 9059 | . . . . . 6 ⊢ 3 ∈ ℂ | |
8 | 3ap0 9080 | . . . . . 6 ⊢ 3 # 0 | |
9 | 7, 8 | pm3.2i 272 | . . . . 5 ⊢ (3 ∈ ℂ ∧ 3 # 0) |
10 | divcanap5 8735 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ (3 ∈ ℂ ∧ 3 # 0)) → ((3 · 1) / (3 · 2)) = (1 / 2)) | |
11 | 3, 6, 9, 10 | mp3an 1348 | . . . 4 ⊢ ((3 · 1) / (3 · 2)) = (1 / 2) |
12 | 3t1e3 9140 | . . . . 5 ⊢ (3 · 1) = 3 | |
13 | 3t2e6 9141 | . . . . 5 ⊢ (3 · 2) = 6 | |
14 | 12, 13 | oveq12i 5931 | . . . 4 ⊢ ((3 · 1) / (3 · 2)) = (3 / 6) |
15 | 2, 11, 14 | 3eqtr2i 2220 | . . 3 ⊢ (sin‘(π / 6)) = (3 / 6) |
16 | pire 14962 | . . . . . . 7 ⊢ π ∈ ℝ | |
17 | 6nn 9150 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
18 | nndivre 9020 | . . . . . . 7 ⊢ ((π ∈ ℝ ∧ 6 ∈ ℕ) → (π / 6) ∈ ℝ) | |
19 | 16, 17, 18 | mp2an 426 | . . . . . 6 ⊢ (π / 6) ∈ ℝ |
20 | 6re 9065 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
21 | pipos 14964 | . . . . . . 7 ⊢ 0 < π | |
22 | 6pos 9085 | . . . . . . 7 ⊢ 0 < 6 | |
23 | 16, 20, 21, 22 | divgt0ii 8940 | . . . . . 6 ⊢ 0 < (π / 6) |
24 | 1re 8020 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
25 | pigt2lt4 14960 | . . . . . . . . . 10 ⊢ (2 < π ∧ π < 4) | |
26 | 25 | simpri 113 | . . . . . . . . 9 ⊢ π < 4 |
27 | 4re 9061 | . . . . . . . . . 10 ⊢ 4 ∈ ℝ | |
28 | 16, 27, 20, 22 | ltdiv1ii 8950 | . . . . . . . . 9 ⊢ (π < 4 ↔ (π / 6) < (4 / 6)) |
29 | 26, 28 | mpbi 145 | . . . . . . . 8 ⊢ (π / 6) < (4 / 6) |
30 | 4lt6 9165 | . . . . . . . . 9 ⊢ 4 < 6 | |
31 | 20, 22 | elrpii 9725 | . . . . . . . . . 10 ⊢ 6 ∈ ℝ+ |
32 | divlt1lt 9793 | . . . . . . . . . 10 ⊢ ((4 ∈ ℝ ∧ 6 ∈ ℝ+) → ((4 / 6) < 1 ↔ 4 < 6)) | |
33 | 27, 31, 32 | mp2an 426 | . . . . . . . . 9 ⊢ ((4 / 6) < 1 ↔ 4 < 6) |
34 | 30, 33 | mpbir 146 | . . . . . . . 8 ⊢ (4 / 6) < 1 |
35 | nndivre 9020 | . . . . . . . . . 10 ⊢ ((4 ∈ ℝ ∧ 6 ∈ ℕ) → (4 / 6) ∈ ℝ) | |
36 | 27, 17, 35 | mp2an 426 | . . . . . . . . 9 ⊢ (4 / 6) ∈ ℝ |
37 | 19, 36, 24 | lttri 8126 | . . . . . . . 8 ⊢ (((π / 6) < (4 / 6) ∧ (4 / 6) < 1) → (π / 6) < 1) |
38 | 29, 34, 37 | mp2an 426 | . . . . . . 7 ⊢ (π / 6) < 1 |
39 | 19, 24, 38 | ltleii 8124 | . . . . . 6 ⊢ (π / 6) ≤ 1 |
40 | 0xr 8068 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
41 | elioc2 10005 | . . . . . . 7 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1))) | |
42 | 40, 24, 41 | mp2an 426 | . . . . . 6 ⊢ ((π / 6) ∈ (0(,]1) ↔ ((π / 6) ∈ ℝ ∧ 0 < (π / 6) ∧ (π / 6) ≤ 1)) |
43 | 19, 23, 39, 42 | mpbir3an 1181 | . . . . 5 ⊢ (π / 6) ∈ (0(,]1) |
44 | sin01bnd 11903 | . . . . 5 ⊢ ((π / 6) ∈ (0(,]1) → (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6))) | |
45 | 43, 44 | ax-mp 5 | . . . 4 ⊢ (((π / 6) − (((π / 6)↑3) / 3)) < (sin‘(π / 6)) ∧ (sin‘(π / 6)) < (π / 6)) |
46 | 45 | simpri 113 | . . 3 ⊢ (sin‘(π / 6)) < (π / 6) |
47 | 15, 46 | eqbrtrri 4053 | . 2 ⊢ (3 / 6) < (π / 6) |
48 | 3re 9058 | . . 3 ⊢ 3 ∈ ℝ | |
49 | 48, 16, 20, 22 | ltdiv1ii 8950 | . 2 ⊢ (3 < π ↔ (3 / 6) < (π / 6)) |
50 | 47, 49 | mpbir 146 | 1 ⊢ 3 < π |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 ℝcr 7873 0cc0 7874 1c1 7875 · cmul 7879 ℝ*cxr 8055 < clt 8056 ≤ cle 8057 − cmin 8192 # cap 8602 / cdiv 8693 ℕcn 8984 2c2 9035 3c3 9036 4c4 9037 6c6 9039 ℝ+crp 9722 (,]cioc 9958 ↑cexp 10612 √csqrt 11143 sincsin 11790 cosccos 11791 πcpi 11793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 ax-pre-suploc 7995 ax-addf 7996 ax-mulf 7997 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-disj 4008 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-of 6132 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-map 6706 df-pm 6707 df-en 6797 df-dom 6798 df-fin 6799 df-sup 7045 df-inf 7046 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-xneg 9841 df-xadd 9842 df-ioo 9961 df-ioc 9962 df-ico 9963 df-icc 9964 df-fz 10078 df-fzo 10212 df-seqfrec 10522 df-exp 10613 df-fac 10800 df-bc 10822 df-ihash 10850 df-shft 10962 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-clim 11425 df-sumdc 11500 df-ef 11794 df-sin 11796 df-cos 11797 df-pi 11799 df-rest 12855 df-topgen 12874 df-psmet 14042 df-xmet 14043 df-met 14044 df-bl 14045 df-mopn 14046 df-top 14177 df-topon 14190 df-bases 14222 df-ntr 14275 df-cn 14367 df-cnp 14368 df-tx 14432 df-cncf 14750 df-limced 14835 df-dvap 14836 |
This theorem is referenced by: pige3 15021 |
Copyright terms: Public domain | W3C validator |