| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1rp | GIF version | ||
| Description: 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.) |
| Ref | Expression |
|---|---|
| 1rp | ⊢ 1 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8042 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 0lt1 8170 | . 2 ⊢ 0 < 1 | |
| 3 | 1, 2 | elrpii 9748 | 1 ⊢ 1 ∈ ℝ+ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 1c1 7897 ℝ+crp 9745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 ax-0lt1 8002 ax-rnegex 8005 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-rp 9746 |
| This theorem is referenced by: rpreccl 9772 rpexpcl 10667 caubnd2 11299 climcaucn 11533 fprodrpcl 11793 isprm6 12340 unirnblps 14742 unirnbl 14743 mopnex 14825 tgioo 14874 cncfmptc 14916 dveflem 15046 log1 15186 logrpap0b 15196 rplogcl 15199 logge0 15200 logge0b 15210 loggt0b 15211 1cxp 15220 rplogb1 15268 logbrec 15280 logbgcd1irraplemexp 15288 iooref1o 15765 |
| Copyright terms: Public domain | W3C validator |