| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1rp | GIF version | ||
| Description: 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.) |
| Ref | Expression |
|---|---|
| 1rp | ⊢ 1 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8027 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 0lt1 8155 | . 2 ⊢ 0 < 1 | |
| 3 | 1, 2 | elrpii 9733 | 1 ⊢ 1 ∈ ℝ+ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 1c1 7882 ℝ+crp 9730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1re 7975 ax-addrcl 7978 ax-0lt1 7987 ax-rnegex 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-pnf 8065 df-mnf 8066 df-ltxr 8068 df-rp 9731 |
| This theorem is referenced by: rpreccl 9757 rpexpcl 10652 caubnd2 11284 climcaucn 11518 fprodrpcl 11778 isprm6 12325 unirnblps 14668 unirnbl 14669 mopnex 14751 tgioo 14800 cncfmptc 14842 dveflem 14972 log1 15112 logrpap0b 15122 rplogcl 15125 logge0 15126 logge0b 15136 loggt0b 15137 1cxp 15146 rplogb1 15194 logbrec 15206 logbgcd1irraplemexp 15214 iooref1o 15688 |
| Copyright terms: Public domain | W3C validator |