| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1rp | GIF version | ||
| Description: 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.) |
| Ref | Expression |
|---|---|
| 1rp | ⊢ 1 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8106 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 0lt1 8234 | . 2 ⊢ 0 < 1 | |
| 3 | 1, 2 | elrpii 9813 | 1 ⊢ 1 ∈ ℝ+ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2178 1c1 7961 ℝ+crp 9810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-0lt1 8066 ax-rnegex 8069 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-rp 9811 |
| This theorem is referenced by: rpreccl 9837 rpexpcl 10740 caubnd2 11543 climcaucn 11777 fprodrpcl 12037 isprm6 12584 unirnblps 15009 unirnbl 15010 mopnex 15092 tgioo 15141 cncfmptc 15183 dveflem 15313 log1 15453 logrpap0b 15463 rplogcl 15466 logge0 15467 logge0b 15477 loggt0b 15478 1cxp 15487 rplogb1 15535 logbrec 15547 logbgcd1irraplemexp 15555 iooref1o 16175 |
| Copyright terms: Public domain | W3C validator |