![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1rp | GIF version |
Description: 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.) |
Ref | Expression |
---|---|
1rp | ⊢ 1 ∈ ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 8018 | . 2 ⊢ 1 ∈ ℝ | |
2 | 0lt1 8146 | . 2 ⊢ 0 < 1 | |
3 | 1, 2 | elrpii 9722 | 1 ⊢ 1 ∈ ℝ+ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 1c1 7873 ℝ+crp 9719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-0lt1 7978 ax-rnegex 7981 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-rp 9720 |
This theorem is referenced by: rpreccl 9746 rpexpcl 10629 caubnd2 11261 climcaucn 11494 fprodrpcl 11754 isprm6 12285 unirnblps 14590 unirnbl 14591 mopnex 14673 tgioo 14714 cncfmptc 14750 dveflem 14872 log1 15001 logrpap0b 15011 rplogcl 15014 logge0 15015 logge0b 15025 loggt0b 15026 1cxp 15035 rplogb1 15080 logbrec 15092 logbgcd1irraplemexp 15100 iooref1o 15524 |
Copyright terms: Public domain | W3C validator |