![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1rp | GIF version |
Description: 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.) |
Ref | Expression |
---|---|
1rp | ⊢ 1 ∈ ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7959 | . 2 ⊢ 1 ∈ ℝ | |
2 | 0lt1 8087 | . 2 ⊢ 0 < 1 | |
3 | 1, 2 | elrpii 9659 | 1 ⊢ 1 ∈ ℝ+ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 1c1 7815 ℝ+crp 9656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1re 7908 ax-addrcl 7911 ax-0lt1 7920 ax-rnegex 7923 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-xp 4634 df-pnf 7997 df-mnf 7998 df-ltxr 8000 df-rp 9657 |
This theorem is referenced by: rpreccl 9683 rpexpcl 10542 caubnd2 11129 climcaucn 11362 fprodrpcl 11622 isprm6 12150 unirnblps 14083 unirnbl 14084 mopnex 14166 tgioo 14207 cncfmptc 14243 dveflem 14348 log1 14448 logrpap0b 14458 rplogcl 14461 logge0 14462 logge0b 14472 loggt0b 14473 1cxp 14482 rplogb1 14527 logbrec 14539 logbgcd1irraplemexp 14547 iooref1o 14944 |
Copyright terms: Public domain | W3C validator |