| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1rp | GIF version | ||
| Description: 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.) |
| Ref | Expression |
|---|---|
| 1rp | ⊢ 1 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8141 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 0lt1 8269 | . 2 ⊢ 0 < 1 | |
| 3 | 1, 2 | elrpii 9848 | 1 ⊢ 1 ∈ ℝ+ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 1c1 7996 ℝ+crp 9845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-0lt1 8101 ax-rnegex 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-rp 9846 |
| This theorem is referenced by: rpreccl 9872 rpexpcl 10775 caubnd2 11623 climcaucn 11857 fprodrpcl 12117 isprm6 12664 unirnblps 15090 unirnbl 15091 mopnex 15173 tgioo 15222 cncfmptc 15264 dveflem 15394 log1 15534 logrpap0b 15544 rplogcl 15547 logge0 15548 logge0b 15558 loggt0b 15559 1cxp 15568 rplogb1 15616 logbrec 15628 logbgcd1irraplemexp 15636 iooref1o 16361 |
| Copyright terms: Public domain | W3C validator |