ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1rp GIF version

Theorem 1rp 9452
Description: 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.)
Assertion
Ref Expression
1rp 1 ∈ ℝ+

Proof of Theorem 1rp
StepHypRef Expression
1 1re 7772 . 2 1 ∈ ℝ
2 0lt1 7896 . 2 0 < 1
31, 2elrpii 9451 1 1 ∈ ℝ+
Colors of variables: wff set class
Syntax hints:  wcel 1480  1c1 7628  +crp 9448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1re 7721  ax-addrcl 7724  ax-0lt1 7733  ax-rnegex 7736
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-pnf 7809  df-mnf 7810  df-ltxr 7812  df-rp 9449
This theorem is referenced by:  rpreccl  9475  rpexpcl  10319  caubnd2  10896  climcaucn  11127  isprm6  11832  unirnblps  12601  unirnbl  12602  mopnex  12684  tgioo  12725  cncfmptc  12761  dveflem  12865
  Copyright terms: Public domain W3C validator