![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1rp | GIF version |
Description: 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.) |
Ref | Expression |
---|---|
1rp | ⊢ 1 ∈ ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 8020 | . 2 ⊢ 1 ∈ ℝ | |
2 | 0lt1 8148 | . 2 ⊢ 0 < 1 | |
3 | 1, 2 | elrpii 9725 | 1 ⊢ 1 ∈ ℝ+ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 1c1 7875 ℝ+crp 9722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-0lt1 7980 ax-rnegex 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-rp 9723 |
This theorem is referenced by: rpreccl 9749 rpexpcl 10632 caubnd2 11264 climcaucn 11497 fprodrpcl 11757 isprm6 12288 unirnblps 14601 unirnbl 14602 mopnex 14684 tgioo 14733 cncfmptc 14775 dveflem 14905 log1 15042 logrpap0b 15052 rplogcl 15055 logge0 15056 logge0b 15066 loggt0b 15067 1cxp 15076 rplogb1 15121 logbrec 15133 logbgcd1irraplemexp 15141 iooref1o 15594 |
Copyright terms: Public domain | W3C validator |