![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2rp | GIF version |
Description: 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
2rp | ⊢ 2 ∈ ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 9003 | . 2 ⊢ 2 ∈ ℝ | |
2 | 2pos 9024 | . 2 ⊢ 0 < 2 | |
3 | 1, 2 | elrpii 9670 | 1 ⊢ 2 ∈ ℝ+ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2158 2c2 8984 ℝ+crp 9667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-pre-lttrn 7939 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-xp 4644 df-iota 5190 df-fv 5236 df-ov 5891 df-pnf 8008 df-mnf 8009 df-ltxr 8011 df-2 8992 df-rp 9668 |
This theorem is referenced by: rphalfcl 9695 qbtwnrelemcalc 10270 flhalf 10316 cvg1nlemcxze 11005 cvg1nlemres 11008 resqrexlemdec 11034 resqrexlemlo 11036 resqrexlemcvg 11042 abstri 11127 maxabsle 11227 maxabslemlub 11230 maxltsup 11241 bdtri 11262 efcllemp 11680 cos12dec 11789 oddprm 12273 sin0pilem2 14499 cosordlem 14566 2logb9irrALT 14688 sqrt2cxp2logb9e3 14689 cvgcmp2nlemabs 15077 cvgcmp2n 15078 trilpolemclim 15081 trilpolemcl 15082 trilpolemisumle 15083 trilpolemeq1 15085 trilpolemlt1 15086 apdifflemf 15091 nconstwlpolemgt0 15109 taupi 15118 |
Copyright terms: Public domain | W3C validator |