Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2rp | GIF version |
Description: 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
2rp | ⊢ 2 ∈ ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 8923 | . 2 ⊢ 2 ∈ ℝ | |
2 | 2pos 8944 | . 2 ⊢ 0 < 2 | |
3 | 1, 2 | elrpii 9588 | 1 ⊢ 2 ∈ ℝ+ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 2c2 8904 ℝ+crp 9585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-xp 4609 df-iota 5152 df-fv 5195 df-ov 5844 df-pnf 7931 df-mnf 7932 df-ltxr 7934 df-2 8912 df-rp 9586 |
This theorem is referenced by: rphalfcl 9613 qbtwnrelemcalc 10187 flhalf 10233 cvg1nlemcxze 10920 cvg1nlemres 10923 resqrexlemdec 10949 resqrexlemlo 10951 resqrexlemcvg 10957 abstri 11042 maxabsle 11142 maxabslemlub 11145 maxltsup 11156 bdtri 11177 efcllemp 11595 cos12dec 11704 oddprm 12187 sin0pilem2 13303 cosordlem 13370 2logb9irrALT 13492 sqrt2cxp2logb9e3 13493 cvgcmp2nlemabs 13871 cvgcmp2n 13872 trilpolemclim 13875 trilpolemcl 13876 trilpolemisumle 13877 trilpolemeq1 13879 trilpolemlt1 13880 apdifflemf 13885 nconstwlpolemgt0 13902 taupi 13909 |
Copyright terms: Public domain | W3C validator |