| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rp | GIF version | ||
| Description: 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| 2rp | ⊢ 2 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9060 | . 2 ⊢ 2 ∈ ℝ | |
| 2 | 2pos 9081 | . 2 ⊢ 0 < 2 | |
| 3 | 1, 2 | elrpii 9731 | 1 ⊢ 2 ∈ ℝ+ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 2c2 9041 ℝ+crp 9728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-2 9049 df-rp 9729 |
| This theorem is referenced by: rphalfcl 9756 qbtwnrelemcalc 10345 flhalf 10392 fldiv4lem1div2uz2 10396 cvg1nlemcxze 11147 cvg1nlemres 11150 resqrexlemdec 11176 resqrexlemlo 11178 resqrexlemcvg 11184 abstri 11269 maxabsle 11369 maxabslemlub 11372 maxltsup 11383 bdtri 11405 efcllemp 11823 cos12dec 11933 bitsfzolem 12118 bitsfzo 12119 oddprm 12428 2expltfac 12608 ivthdichlem 14887 sin0pilem2 15018 cosordlem 15085 2logb9irrALT 15210 sqrt2cxp2logb9e3 15211 1sgm2ppw 15231 gausslemma2dlem1a 15299 2lgslem3b 15335 2lgslem3c 15336 2lgslem3d 15337 cvgcmp2nlemabs 15676 cvgcmp2n 15677 trilpolemclim 15680 trilpolemcl 15681 trilpolemisumle 15682 trilpolemeq1 15684 trilpolemlt1 15685 apdifflemf 15690 nconstwlpolemgt0 15708 taupi 15717 |
| Copyright terms: Public domain | W3C validator |