| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rp | GIF version | ||
| Description: 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| 2rp | ⊢ 2 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9079 | . 2 ⊢ 2 ∈ ℝ | |
| 2 | 2pos 9100 | . 2 ⊢ 0 < 2 | |
| 3 | 1, 2 | elrpii 9750 | 1 ⊢ 2 ∈ ℝ+ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 2c2 9060 ℝ+crp 9747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8082 df-mnf 8083 df-ltxr 8085 df-2 9068 df-rp 9748 |
| This theorem is referenced by: rphalfcl 9775 qbtwnrelemcalc 10364 flhalf 10411 fldiv4lem1div2uz2 10415 cvg1nlemcxze 11166 cvg1nlemres 11169 resqrexlemdec 11195 resqrexlemlo 11197 resqrexlemcvg 11203 abstri 11288 maxabsle 11388 maxabslemlub 11391 maxltsup 11402 bdtri 11424 efcllemp 11842 cos12dec 11952 bitsfzolem 12138 bitsfzo 12139 bitsmod 12140 oddprm 12455 2expltfac 12635 ivthdichlem 14995 sin0pilem2 15126 cosordlem 15193 2logb9irrALT 15318 sqrt2cxp2logb9e3 15319 1sgm2ppw 15339 gausslemma2dlem1a 15407 2lgslem3b 15443 2lgslem3c 15444 2lgslem3d 15445 cvgcmp2nlemabs 15789 cvgcmp2n 15790 trilpolemclim 15793 trilpolemcl 15794 trilpolemisumle 15795 trilpolemeq1 15797 trilpolemlt1 15798 apdifflemf 15803 nconstwlpolemgt0 15821 taupi 15830 |
| Copyright terms: Public domain | W3C validator |