| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rp | GIF version | ||
| Description: 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| 2rp | ⊢ 2 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9106 | . 2 ⊢ 2 ∈ ℝ | |
| 2 | 2pos 9127 | . 2 ⊢ 0 < 2 | |
| 3 | 1, 2 | elrpii 9778 | 1 ⊢ 2 ∈ ℝ+ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 2c2 9087 ℝ+crp 9775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-iota 5232 df-fv 5279 df-ov 5947 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-2 9095 df-rp 9776 |
| This theorem is referenced by: rphalfcl 9803 qbtwnrelemcalc 10398 flhalf 10445 fldiv4lem1div2uz2 10449 cvg1nlemcxze 11293 cvg1nlemres 11296 resqrexlemdec 11322 resqrexlemlo 11324 resqrexlemcvg 11330 abstri 11415 maxabsle 11515 maxabslemlub 11518 maxltsup 11529 bdtri 11551 efcllemp 11969 cos12dec 12079 bitsfzolem 12265 bitsfzo 12266 bitsmod 12267 oddprm 12582 2expltfac 12762 ivthdichlem 15123 sin0pilem2 15254 cosordlem 15321 2logb9irrALT 15446 sqrt2cxp2logb9e3 15447 1sgm2ppw 15467 gausslemma2dlem1a 15535 2lgslem3b 15571 2lgslem3c 15572 2lgslem3d 15573 cvgcmp2nlemabs 15971 cvgcmp2n 15972 trilpolemclim 15975 trilpolemcl 15976 trilpolemisumle 15977 trilpolemeq1 15979 trilpolemlt1 15980 apdifflemf 15985 nconstwlpolemgt0 16003 taupi 16012 |
| Copyright terms: Public domain | W3C validator |