Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2rp | GIF version |
Description: 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
2rp | ⊢ 2 ∈ ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 8919 | . 2 ⊢ 2 ∈ ℝ | |
2 | 2pos 8940 | . 2 ⊢ 0 < 2 | |
3 | 1, 2 | elrpii 9584 | 1 ⊢ 2 ∈ ℝ+ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2135 2c2 8900 ℝ+crp 9581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 ax-pr 4182 ax-un 4406 ax-setind 4509 ax-cnex 7836 ax-resscn 7837 ax-1cn 7838 ax-1re 7839 ax-icn 7840 ax-addcl 7841 ax-addrcl 7842 ax-mulcl 7843 ax-addcom 7845 ax-addass 7847 ax-i2m1 7850 ax-0lt1 7851 ax-0id 7853 ax-rnegex 7854 ax-pre-lttrn 7859 ax-pre-ltadd 7861 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-nel 2430 df-ral 2447 df-rex 2448 df-rab 2451 df-v 2724 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-pr 3578 df-op 3580 df-uni 3785 df-br 3978 df-opab 4039 df-xp 4605 df-iota 5148 df-fv 5191 df-ov 5840 df-pnf 7927 df-mnf 7928 df-ltxr 7930 df-2 8908 df-rp 9582 |
This theorem is referenced by: rphalfcl 9609 qbtwnrelemcalc 10182 flhalf 10228 cvg1nlemcxze 10911 cvg1nlemres 10914 resqrexlemdec 10940 resqrexlemlo 10942 resqrexlemcvg 10948 abstri 11033 maxabsle 11133 maxabslemlub 11136 maxltsup 11147 bdtri 11168 efcllemp 11586 cos12dec 11695 oddprm 12177 sin0pilem2 13261 cosordlem 13328 2logb9irrALT 13450 sqrt2cxp2logb9e3 13451 cvgcmp2nlemabs 13763 cvgcmp2n 13764 trilpolemclim 13767 trilpolemcl 13768 trilpolemisumle 13769 trilpolemeq1 13771 trilpolemlt1 13772 apdifflemf 13777 nconstwlpolemgt0 13794 taupi 13801 |
Copyright terms: Public domain | W3C validator |