| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rp | GIF version | ||
| Description: 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| 2rp | ⊢ 2 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9176 | . 2 ⊢ 2 ∈ ℝ | |
| 2 | 2pos 9197 | . 2 ⊢ 0 < 2 | |
| 3 | 1, 2 | elrpii 9848 | 1 ⊢ 2 ∈ ℝ+ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 2c2 9157 ℝ+crp 9845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-iota 5277 df-fv 5325 df-ov 6003 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-2 9165 df-rp 9846 |
| This theorem is referenced by: rphalfcl 9873 qbtwnrelemcalc 10470 flhalf 10517 fldiv4lem1div2uz2 10521 cvg1nlemcxze 11488 cvg1nlemres 11491 resqrexlemdec 11517 resqrexlemlo 11519 resqrexlemcvg 11525 abstri 11610 maxabsle 11710 maxabslemlub 11713 maxltsup 11724 bdtri 11746 efcllemp 12164 cos12dec 12274 bitsfzolem 12460 bitsfzo 12461 bitsmod 12462 oddprm 12777 2expltfac 12957 ivthdichlem 15319 sin0pilem2 15450 cosordlem 15517 2logb9irrALT 15642 sqrt2cxp2logb9e3 15643 1sgm2ppw 15663 gausslemma2dlem1a 15731 2lgslem3b 15767 2lgslem3c 15768 2lgslem3d 15769 cvgcmp2nlemabs 16359 cvgcmp2n 16360 trilpolemclim 16363 trilpolemcl 16364 trilpolemisumle 16365 trilpolemeq1 16367 trilpolemlt1 16368 apdifflemf 16373 nconstwlpolemgt0 16391 taupi 16400 |
| Copyright terms: Public domain | W3C validator |