| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rp | GIF version | ||
| Description: 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| 2rp | ⊢ 2 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9077 | . 2 ⊢ 2 ∈ ℝ | |
| 2 | 2pos 9098 | . 2 ⊢ 0 < 2 | |
| 3 | 1, 2 | elrpii 9748 | 1 ⊢ 2 ∈ ℝ+ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 2c2 9058 ℝ+crp 9745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-2 9066 df-rp 9746 |
| This theorem is referenced by: rphalfcl 9773 qbtwnrelemcalc 10362 flhalf 10409 fldiv4lem1div2uz2 10413 cvg1nlemcxze 11164 cvg1nlemres 11167 resqrexlemdec 11193 resqrexlemlo 11195 resqrexlemcvg 11201 abstri 11286 maxabsle 11386 maxabslemlub 11389 maxltsup 11400 bdtri 11422 efcllemp 11840 cos12dec 11950 bitsfzolem 12136 bitsfzo 12137 bitsmod 12138 oddprm 12453 2expltfac 12633 ivthdichlem 14971 sin0pilem2 15102 cosordlem 15169 2logb9irrALT 15294 sqrt2cxp2logb9e3 15295 1sgm2ppw 15315 gausslemma2dlem1a 15383 2lgslem3b 15419 2lgslem3c 15420 2lgslem3d 15421 cvgcmp2nlemabs 15763 cvgcmp2n 15764 trilpolemclim 15767 trilpolemcl 15768 trilpolemisumle 15769 trilpolemeq1 15771 trilpolemlt1 15772 apdifflemf 15777 nconstwlpolemgt0 15795 taupi 15804 |
| Copyright terms: Public domain | W3C validator |