| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rp | GIF version | ||
| Description: 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| 2rp | ⊢ 2 ∈ ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9141 | . 2 ⊢ 2 ∈ ℝ | |
| 2 | 2pos 9162 | . 2 ⊢ 0 < 2 | |
| 3 | 1, 2 | elrpii 9813 | 1 ⊢ 2 ∈ ℝ+ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2178 2c2 9122 ℝ+crp 9810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-iota 5251 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-2 9130 df-rp 9811 |
| This theorem is referenced by: rphalfcl 9838 qbtwnrelemcalc 10435 flhalf 10482 fldiv4lem1div2uz2 10486 cvg1nlemcxze 11408 cvg1nlemres 11411 resqrexlemdec 11437 resqrexlemlo 11439 resqrexlemcvg 11445 abstri 11530 maxabsle 11630 maxabslemlub 11633 maxltsup 11644 bdtri 11666 efcllemp 12084 cos12dec 12194 bitsfzolem 12380 bitsfzo 12381 bitsmod 12382 oddprm 12697 2expltfac 12877 ivthdichlem 15238 sin0pilem2 15369 cosordlem 15436 2logb9irrALT 15561 sqrt2cxp2logb9e3 15562 1sgm2ppw 15582 gausslemma2dlem1a 15650 2lgslem3b 15686 2lgslem3c 15687 2lgslem3d 15688 cvgcmp2nlemabs 16173 cvgcmp2n 16174 trilpolemclim 16177 trilpolemcl 16178 trilpolemisumle 16179 trilpolemeq1 16181 trilpolemlt1 16182 apdifflemf 16187 nconstwlpolemgt0 16205 taupi 16214 |
| Copyright terms: Public domain | W3C validator |