ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  receuap GIF version

Theorem receuap 8036
Description: Existential uniqueness of reciprocals. (Contributed by Jim Kingdon, 21-Feb-2020.)
Assertion
Ref Expression
receuap ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem receuap
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 recexap 8020 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1)
213adant1 957 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1)
3 simprl 498 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → 𝑦 ∈ ℂ)
4 simpll 496 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → 𝐴 ∈ ℂ)
53, 4mulcld 7411 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → (𝑦 · 𝐴) ∈ ℂ)
6 oveq1 5598 . . . . . . . 8 ((𝐵 · 𝑦) = 1 → ((𝐵 · 𝑦) · 𝐴) = (1 · 𝐴))
76ad2antll 475 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → ((𝐵 · 𝑦) · 𝐴) = (1 · 𝐴))
8 simplr 497 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → 𝐵 ∈ ℂ)
98, 3, 4mulassd 7414 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → ((𝐵 · 𝑦) · 𝐴) = (𝐵 · (𝑦 · 𝐴)))
104mulid2d 7409 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → (1 · 𝐴) = 𝐴)
117, 9, 103eqtr3d 2123 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → (𝐵 · (𝑦 · 𝐴)) = 𝐴)
12 oveq2 5599 . . . . . . . 8 (𝑥 = (𝑦 · 𝐴) → (𝐵 · 𝑥) = (𝐵 · (𝑦 · 𝐴)))
1312eqeq1d 2091 . . . . . . 7 (𝑥 = (𝑦 · 𝐴) → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · (𝑦 · 𝐴)) = 𝐴))
1413rspcev 2712 . . . . . 6 (((𝑦 · 𝐴) ∈ ℂ ∧ (𝐵 · (𝑦 · 𝐴)) = 𝐴) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
155, 11, 14syl2anc 403 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
1615rexlimdvaa 2484 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1 → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
17163adant3 959 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1 → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
182, 17mpd 13 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
19 eqtr3 2102 . . . . . . 7 (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → (𝐵 · 𝑥) = (𝐵 · 𝑦))
20 mulcanap 8032 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((𝐵 · 𝑥) = (𝐵 · 𝑦) ↔ 𝑥 = 𝑦))
2119, 20syl5ib 152 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
22213expa 1139 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
2322expcom 114 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)))
24233adant1 957 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)))
2524ralrimivv 2448 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
26 oveq2 5599 . . . 4 (𝑥 = 𝑦 → (𝐵 · 𝑥) = (𝐵 · 𝑦))
2726eqeq1d 2091 . . 3 (𝑥 = 𝑦 → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑦) = 𝐴))
2827reu4 2797 . 2 (∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴 ↔ (∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)))
2918, 25, 28sylanbrc 408 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 920   = wceq 1285  wcel 1434  wral 2353  wrex 2354  ∃!wreu 2355   class class class wbr 3811  (class class class)co 5591  cc 7251  0cc0 7253  1c1 7254   · cmul 7258   # cap 7958
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-id 4084  df-po 4087  df-iso 4088  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-iota 4934  df-fun 4971  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959
This theorem is referenced by:  divvalap  8039  divmulap  8040  divclap  8043
  Copyright terms: Public domain W3C validator