ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  receuap GIF version

Theorem receuap 8587
Description: Existential uniqueness of reciprocals. (Contributed by Jim Kingdon, 21-Feb-2020.)
Assertion
Ref Expression
receuap ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem receuap
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 recexap 8571 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1)
213adant1 1010 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1)
3 simprl 526 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → 𝑦 ∈ ℂ)
4 simpll 524 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → 𝐴 ∈ ℂ)
53, 4mulcld 7940 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → (𝑦 · 𝐴) ∈ ℂ)
6 oveq1 5860 . . . . . . . 8 ((𝐵 · 𝑦) = 1 → ((𝐵 · 𝑦) · 𝐴) = (1 · 𝐴))
76ad2antll 488 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → ((𝐵 · 𝑦) · 𝐴) = (1 · 𝐴))
8 simplr 525 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → 𝐵 ∈ ℂ)
98, 3, 4mulassd 7943 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → ((𝐵 · 𝑦) · 𝐴) = (𝐵 · (𝑦 · 𝐴)))
104mulid2d 7938 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → (1 · 𝐴) = 𝐴)
117, 9, 103eqtr3d 2211 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → (𝐵 · (𝑦 · 𝐴)) = 𝐴)
12 oveq2 5861 . . . . . . . 8 (𝑥 = (𝑦 · 𝐴) → (𝐵 · 𝑥) = (𝐵 · (𝑦 · 𝐴)))
1312eqeq1d 2179 . . . . . . 7 (𝑥 = (𝑦 · 𝐴) → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · (𝑦 · 𝐴)) = 𝐴))
1413rspcev 2834 . . . . . 6 (((𝑦 · 𝐴) ∈ ℂ ∧ (𝐵 · (𝑦 · 𝐴)) = 𝐴) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
155, 11, 14syl2anc 409 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐵 · 𝑦) = 1)) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
1615rexlimdvaa 2588 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1 → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
17163adant3 1012 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (∃𝑦 ∈ ℂ (𝐵 · 𝑦) = 1 → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
182, 17mpd 13 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
19 eqtr3 2190 . . . . . . 7 (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → (𝐵 · 𝑥) = (𝐵 · 𝑦))
20 mulcanap 8583 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((𝐵 · 𝑥) = (𝐵 · 𝑦) ↔ 𝑥 = 𝑦))
2119, 20syl5ib 153 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
22213expa 1198 . . . . 5 (((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
2322expcom 115 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)))
24233adant1 1010 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)))
2524ralrimivv 2551 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦))
26 oveq2 5861 . . . 4 (𝑥 = 𝑦 → (𝐵 · 𝑥) = (𝐵 · 𝑦))
2726eqeq1d 2179 . . 3 (𝑥 = 𝑦 → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · 𝑦) = 𝐴))
2827reu4 2924 . 2 (∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴 ↔ (∃𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ (((𝐵 · 𝑥) = 𝐴 ∧ (𝐵 · 𝑦) = 𝐴) → 𝑥 = 𝑦)))
2918, 25, 28sylanbrc 415 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  wral 2448  wrex 2449  ∃!wreu 2450   class class class wbr 3989  (class class class)co 5853  cc 7772  0cc0 7774  1c1 7775   · cmul 7779   # cap 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501
This theorem is referenced by:  divvalap  8591  divmulap  8592  divclap  8595
  Copyright terms: Public domain W3C validator