![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > foco | GIF version |
Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.) |
Ref | Expression |
---|---|
foco | ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffo2 5442 | . . 3 ⊢ (𝐹:𝐵–onto→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶)) | |
2 | dffo2 5442 | . . 3 ⊢ (𝐺:𝐴–onto→𝐵 ↔ (𝐺:𝐴⟶𝐵 ∧ ran 𝐺 = 𝐵)) | |
3 | fco 5381 | . . . . 5 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | |
4 | 3 | ad2ant2r 509 | . . . 4 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴⟶𝐵 ∧ ran 𝐺 = 𝐵)) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
5 | fdm 5371 | . . . . . . . 8 ⊢ (𝐹:𝐵⟶𝐶 → dom 𝐹 = 𝐵) | |
6 | eqtr3 2197 | . . . . . . . 8 ⊢ ((dom 𝐹 = 𝐵 ∧ ran 𝐺 = 𝐵) → dom 𝐹 = ran 𝐺) | |
7 | 5, 6 | sylan 283 | . . . . . . 7 ⊢ ((𝐹:𝐵⟶𝐶 ∧ ran 𝐺 = 𝐵) → dom 𝐹 = ran 𝐺) |
8 | rncoeq 4900 | . . . . . . . . 9 ⊢ (dom 𝐹 = ran 𝐺 → ran (𝐹 ∘ 𝐺) = ran 𝐹) | |
9 | 8 | eqeq1d 2186 | . . . . . . . 8 ⊢ (dom 𝐹 = ran 𝐺 → (ran (𝐹 ∘ 𝐺) = 𝐶 ↔ ran 𝐹 = 𝐶)) |
10 | 9 | biimpar 297 | . . . . . . 7 ⊢ ((dom 𝐹 = ran 𝐺 ∧ ran 𝐹 = 𝐶) → ran (𝐹 ∘ 𝐺) = 𝐶) |
11 | 7, 10 | sylan 283 | . . . . . 6 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐺 = 𝐵) ∧ ran 𝐹 = 𝐶) → ran (𝐹 ∘ 𝐺) = 𝐶) |
12 | 11 | an32s 568 | . . . . 5 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶) ∧ ran 𝐺 = 𝐵) → ran (𝐹 ∘ 𝐺) = 𝐶) |
13 | 12 | adantrl 478 | . . . 4 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴⟶𝐵 ∧ ran 𝐺 = 𝐵)) → ran (𝐹 ∘ 𝐺) = 𝐶) |
14 | 4, 13 | jca 306 | . . 3 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴⟶𝐵 ∧ ran 𝐺 = 𝐵)) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ ran (𝐹 ∘ 𝐺) = 𝐶)) |
15 | 1, 2, 14 | syl2anb 291 | . 2 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ ran (𝐹 ∘ 𝐺) = 𝐶)) |
16 | dffo2 5442 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ↔ ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ ran (𝐹 ∘ 𝐺) = 𝐶)) | |
17 | 15, 16 | sylibr 134 | 1 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 dom cdm 4626 ran crn 4627 ∘ ccom 4630 ⟶wf 5212 –onto→wfo 5214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-br 4004 df-opab 4065 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-fun 5218 df-fn 5219 df-f 5220 df-fo 5222 |
This theorem is referenced by: f1oco 5484 ennnfonelemnn0 12417 ctinfomlemom 12422 qnnen 12426 enctlem 12427 |
Copyright terms: Public domain | W3C validator |