| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foco | GIF version | ||
| Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| foco | ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo2 5487 | . . 3 ⊢ (𝐹:𝐵–onto→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶)) | |
| 2 | dffo2 5487 | . . 3 ⊢ (𝐺:𝐴–onto→𝐵 ↔ (𝐺:𝐴⟶𝐵 ∧ ran 𝐺 = 𝐵)) | |
| 3 | fco 5426 | . . . . 5 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | |
| 4 | 3 | ad2ant2r 509 | . . . 4 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴⟶𝐵 ∧ ran 𝐺 = 𝐵)) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| 5 | fdm 5416 | . . . . . . . 8 ⊢ (𝐹:𝐵⟶𝐶 → dom 𝐹 = 𝐵) | |
| 6 | eqtr3 2216 | . . . . . . . 8 ⊢ ((dom 𝐹 = 𝐵 ∧ ran 𝐺 = 𝐵) → dom 𝐹 = ran 𝐺) | |
| 7 | 5, 6 | sylan 283 | . . . . . . 7 ⊢ ((𝐹:𝐵⟶𝐶 ∧ ran 𝐺 = 𝐵) → dom 𝐹 = ran 𝐺) |
| 8 | rncoeq 4940 | . . . . . . . . 9 ⊢ (dom 𝐹 = ran 𝐺 → ran (𝐹 ∘ 𝐺) = ran 𝐹) | |
| 9 | 8 | eqeq1d 2205 | . . . . . . . 8 ⊢ (dom 𝐹 = ran 𝐺 → (ran (𝐹 ∘ 𝐺) = 𝐶 ↔ ran 𝐹 = 𝐶)) |
| 10 | 9 | biimpar 297 | . . . . . . 7 ⊢ ((dom 𝐹 = ran 𝐺 ∧ ran 𝐹 = 𝐶) → ran (𝐹 ∘ 𝐺) = 𝐶) |
| 11 | 7, 10 | sylan 283 | . . . . . 6 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐺 = 𝐵) ∧ ran 𝐹 = 𝐶) → ran (𝐹 ∘ 𝐺) = 𝐶) |
| 12 | 11 | an32s 568 | . . . . 5 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶) ∧ ran 𝐺 = 𝐵) → ran (𝐹 ∘ 𝐺) = 𝐶) |
| 13 | 12 | adantrl 478 | . . . 4 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴⟶𝐵 ∧ ran 𝐺 = 𝐵)) → ran (𝐹 ∘ 𝐺) = 𝐶) |
| 14 | 4, 13 | jca 306 | . . 3 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴⟶𝐵 ∧ ran 𝐺 = 𝐵)) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ ran (𝐹 ∘ 𝐺) = 𝐶)) |
| 15 | 1, 2, 14 | syl2anb 291 | . 2 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ ran (𝐹 ∘ 𝐺) = 𝐶)) |
| 16 | dffo2 5487 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ↔ ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ ran (𝐹 ∘ 𝐺) = 𝐶)) | |
| 17 | 15, 16 | sylibr 134 | 1 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 dom cdm 4664 ran crn 4665 ∘ ccom 4668 ⟶wf 5255 –onto→wfo 5257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 df-fo 5265 |
| This theorem is referenced by: f1oco 5530 nninfct 12233 ennnfonelemnn0 12664 ctinfomlemom 12669 qnnen 12673 enctlem 12674 |
| Copyright terms: Public domain | W3C validator |