| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foco | GIF version | ||
| Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| foco | ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo2 5511 | . . 3 ⊢ (𝐹:𝐵–onto→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶)) | |
| 2 | dffo2 5511 | . . 3 ⊢ (𝐺:𝐴–onto→𝐵 ↔ (𝐺:𝐴⟶𝐵 ∧ ran 𝐺 = 𝐵)) | |
| 3 | fco 5448 | . . . . 5 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | |
| 4 | 3 | ad2ant2r 509 | . . . 4 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴⟶𝐵 ∧ ran 𝐺 = 𝐵)) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| 5 | fdm 5438 | . . . . . . . 8 ⊢ (𝐹:𝐵⟶𝐶 → dom 𝐹 = 𝐵) | |
| 6 | eqtr3 2226 | . . . . . . . 8 ⊢ ((dom 𝐹 = 𝐵 ∧ ran 𝐺 = 𝐵) → dom 𝐹 = ran 𝐺) | |
| 7 | 5, 6 | sylan 283 | . . . . . . 7 ⊢ ((𝐹:𝐵⟶𝐶 ∧ ran 𝐺 = 𝐵) → dom 𝐹 = ran 𝐺) |
| 8 | rncoeq 4958 | . . . . . . . . 9 ⊢ (dom 𝐹 = ran 𝐺 → ran (𝐹 ∘ 𝐺) = ran 𝐹) | |
| 9 | 8 | eqeq1d 2215 | . . . . . . . 8 ⊢ (dom 𝐹 = ran 𝐺 → (ran (𝐹 ∘ 𝐺) = 𝐶 ↔ ran 𝐹 = 𝐶)) |
| 10 | 9 | biimpar 297 | . . . . . . 7 ⊢ ((dom 𝐹 = ran 𝐺 ∧ ran 𝐹 = 𝐶) → ran (𝐹 ∘ 𝐺) = 𝐶) |
| 11 | 7, 10 | sylan 283 | . . . . . 6 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐺 = 𝐵) ∧ ran 𝐹 = 𝐶) → ran (𝐹 ∘ 𝐺) = 𝐶) |
| 12 | 11 | an32s 568 | . . . . 5 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶) ∧ ran 𝐺 = 𝐵) → ran (𝐹 ∘ 𝐺) = 𝐶) |
| 13 | 12 | adantrl 478 | . . . 4 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴⟶𝐵 ∧ ran 𝐺 = 𝐵)) → ran (𝐹 ∘ 𝐺) = 𝐶) |
| 14 | 4, 13 | jca 306 | . . 3 ⊢ (((𝐹:𝐵⟶𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴⟶𝐵 ∧ ran 𝐺 = 𝐵)) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ ran (𝐹 ∘ 𝐺) = 𝐶)) |
| 15 | 1, 2, 14 | syl2anb 291 | . 2 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ ran (𝐹 ∘ 𝐺) = 𝐶)) |
| 16 | dffo2 5511 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴–onto→𝐶 ↔ ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ∧ ran (𝐹 ∘ 𝐺) = 𝐶)) | |
| 17 | 15, 16 | sylibr 134 | 1 ⊢ ((𝐹:𝐵–onto→𝐶 ∧ 𝐺:𝐴–onto→𝐵) → (𝐹 ∘ 𝐺):𝐴–onto→𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 dom cdm 4680 ran crn 4681 ∘ ccom 4684 ⟶wf 5273 –onto→wfo 5275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-fun 5279 df-fn 5280 df-f 5281 df-fo 5283 |
| This theorem is referenced by: f1oco 5554 nninfct 12412 ennnfonelemnn0 12843 ctinfomlemom 12848 qnnen 12852 enctlem 12853 |
| Copyright terms: Public domain | W3C validator |