ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foco GIF version

Theorem foco 5243
Description: Composition of onto functions. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
foco ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)

Proof of Theorem foco
StepHypRef Expression
1 dffo2 5237 . . 3 (𝐹:𝐵onto𝐶 ↔ (𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶))
2 dffo2 5237 . . 3 (𝐺:𝐴onto𝐵 ↔ (𝐺:𝐴𝐵 ∧ ran 𝐺 = 𝐵))
3 fco 5176 . . . . 5 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
43ad2ant2r 493 . . . 4 (((𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴𝐵 ∧ ran 𝐺 = 𝐵)) → (𝐹𝐺):𝐴𝐶)
5 fdm 5166 . . . . . . . 8 (𝐹:𝐵𝐶 → dom 𝐹 = 𝐵)
6 eqtr3 2107 . . . . . . . 8 ((dom 𝐹 = 𝐵 ∧ ran 𝐺 = 𝐵) → dom 𝐹 = ran 𝐺)
75, 6sylan 277 . . . . . . 7 ((𝐹:𝐵𝐶 ∧ ran 𝐺 = 𝐵) → dom 𝐹 = ran 𝐺)
8 rncoeq 4706 . . . . . . . . 9 (dom 𝐹 = ran 𝐺 → ran (𝐹𝐺) = ran 𝐹)
98eqeq1d 2096 . . . . . . . 8 (dom 𝐹 = ran 𝐺 → (ran (𝐹𝐺) = 𝐶 ↔ ran 𝐹 = 𝐶))
109biimpar 291 . . . . . . 7 ((dom 𝐹 = ran 𝐺 ∧ ran 𝐹 = 𝐶) → ran (𝐹𝐺) = 𝐶)
117, 10sylan 277 . . . . . 6 (((𝐹:𝐵𝐶 ∧ ran 𝐺 = 𝐵) ∧ ran 𝐹 = 𝐶) → ran (𝐹𝐺) = 𝐶)
1211an32s 535 . . . . 5 (((𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶) ∧ ran 𝐺 = 𝐵) → ran (𝐹𝐺) = 𝐶)
1312adantrl 462 . . . 4 (((𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴𝐵 ∧ ran 𝐺 = 𝐵)) → ran (𝐹𝐺) = 𝐶)
144, 13jca 300 . . 3 (((𝐹:𝐵𝐶 ∧ ran 𝐹 = 𝐶) ∧ (𝐺:𝐴𝐵 ∧ ran 𝐺 = 𝐵)) → ((𝐹𝐺):𝐴𝐶 ∧ ran (𝐹𝐺) = 𝐶))
151, 2, 14syl2anb 285 . 2 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → ((𝐹𝐺):𝐴𝐶 ∧ ran (𝐹𝐺) = 𝐶))
16 dffo2 5237 . 2 ((𝐹𝐺):𝐴onto𝐶 ↔ ((𝐹𝐺):𝐴𝐶 ∧ ran (𝐹𝐺) = 𝐶))
1715, 16sylibr 132 1 ((𝐹:𝐵onto𝐶𝐺:𝐴onto𝐵) → (𝐹𝐺):𝐴onto𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1289  dom cdm 4438  ran crn 4439  ccom 4442  wf 5011  ontowfo 5013
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-fun 5017  df-fn 5018  df-f 5019  df-fo 5021
This theorem is referenced by:  f1oco  5276
  Copyright terms: Public domain W3C validator