ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rereceu GIF version

Theorem rereceu 7851
Description: The reciprocal from axprecex 7842 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.)
Assertion
Ref Expression
rereceu ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem rereceu
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axprecex 7842 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
2 simpr 109 . . . 4 ((0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → (𝐴 · 𝑥) = 1)
32reximi 2567 . . 3 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
41, 3syl 14 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
5 eqtr3 2190 . . . . 5 (((𝐴 · 𝑥) = 1 ∧ (𝐴 · 𝑦) = 1) → (𝐴 · 𝑥) = (𝐴 · 𝑦))
6 axprecex 7842 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑧 ∈ ℝ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))
76adantr 274 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∃𝑧 ∈ ℝ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))
8 axresscn 7822 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
9 simpll 524 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐴 ∈ ℝ)
108, 9sselid 3145 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐴 ∈ ℂ)
11 simprl 526 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
128, 11sselid 3145 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
13 axmulcom 7833 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) = (𝑥 · 𝐴))
1410, 12, 13syl2anc 409 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 · 𝑥) = (𝑥 · 𝐴))
15 simprr 527 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
168, 15sselid 3145 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
17 axmulcom 7833 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) = (𝑦 · 𝐴))
1810, 16, 17syl2anc 409 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 · 𝑦) = (𝑦 · 𝐴))
1914, 18eqeq12d 2185 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
2019adantr 274 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
21 oveq1 5860 . . . . . . . . 9 ((𝑥 · 𝐴) = (𝑦 · 𝐴) → ((𝑥 · 𝐴) · 𝑧) = ((𝑦 · 𝐴) · 𝑧))
2220, 21syl6bi 162 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) → ((𝑥 · 𝐴) · 𝑧) = ((𝑦 · 𝐴) · 𝑧)))
2312adantr 274 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝑥 ∈ ℂ)
2410adantr 274 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝐴 ∈ ℂ)
25 simprl 526 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝑧 ∈ ℝ)
268, 25sselid 3145 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝑧 ∈ ℂ)
27 axmulass 7835 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝐴) · 𝑧) = (𝑥 · (𝐴 · 𝑧)))
2823, 24, 26, 27syl3anc 1233 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝑥 · 𝐴) · 𝑧) = (𝑥 · (𝐴 · 𝑧)))
2916adantr 274 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝑦 ∈ ℂ)
30 axmulass 7835 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑦 · 𝐴) · 𝑧) = (𝑦 · (𝐴 · 𝑧)))
3129, 24, 26, 30syl3anc 1233 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝑦 · 𝐴) · 𝑧) = (𝑦 · (𝐴 · 𝑧)))
3228, 31eqeq12d 2185 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → (((𝑥 · 𝐴) · 𝑧) = ((𝑦 · 𝐴) · 𝑧) ↔ (𝑥 · (𝐴 · 𝑧)) = (𝑦 · (𝐴 · 𝑧))))
3322, 32sylibd 148 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) → (𝑥 · (𝐴 · 𝑧)) = (𝑦 · (𝐴 · 𝑧))))
34 oveq2 5861 . . . . . . . . . 10 ((𝐴 · 𝑧) = 1 → (𝑥 · (𝐴 · 𝑧)) = (𝑥 · 1))
3534ad2antll 488 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1)) → (𝑥 · (𝐴 · 𝑧)) = (𝑥 · 1))
36 ax1rid 7839 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 · 1) = 𝑥)
3711, 36syl 14 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 1) = 𝑥)
3835, 37sylan9eqr 2225 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → (𝑥 · (𝐴 · 𝑧)) = 𝑥)
39 oveq2 5861 . . . . . . . . . 10 ((𝐴 · 𝑧) = 1 → (𝑦 · (𝐴 · 𝑧)) = (𝑦 · 1))
4039ad2antll 488 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1)) → (𝑦 · (𝐴 · 𝑧)) = (𝑦 · 1))
41 ax1rid 7839 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑦 · 1) = 𝑦)
4241ad2antll 488 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑦 · 1) = 𝑦)
4340, 42sylan9eqr 2225 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → (𝑦 · (𝐴 · 𝑧)) = 𝑦)
4438, 43eqeq12d 2185 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝑥 · (𝐴 · 𝑧)) = (𝑦 · (𝐴 · 𝑧)) ↔ 𝑥 = 𝑦))
4533, 44sylibd 148 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) → 𝑥 = 𝑦))
467, 45rexlimddv 2592 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) → 𝑥 = 𝑦))
475, 46syl5 32 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (((𝐴 · 𝑥) = 1 ∧ (𝐴 · 𝑦) = 1) → 𝑥 = 𝑦))
4847ralrimivva 2552 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((𝐴 · 𝑥) = 1 ∧ (𝐴 · 𝑦) = 1) → 𝑥 = 𝑦))
49 oveq2 5861 . . . . 5 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
5049eqeq1d 2179 . . . 4 (𝑥 = 𝑦 → ((𝐴 · 𝑥) = 1 ↔ (𝐴 · 𝑦) = 1))
5150rmo4 2923 . . 3 (∃*𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((𝐴 · 𝑥) = 1 ∧ (𝐴 · 𝑦) = 1) → 𝑥 = 𝑦))
5248, 51sylibr 133 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃*𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
53 reu5 2682 . 2 (∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 ↔ (∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 ∧ ∃*𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
544, 52, 53sylanbrc 415 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  wrex 2449  ∃!wreu 2450  ∃*wrmo 2451   class class class wbr 3989  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   < cltrr 7778   · cmul 7779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-imp 7431  df-iltp 7432  df-enr 7688  df-nr 7689  df-plr 7690  df-mr 7691  df-ltr 7692  df-0r 7693  df-1r 7694  df-m1r 7695  df-c 7780  df-0 7781  df-1 7782  df-r 7784  df-mul 7786  df-lt 7787
This theorem is referenced by:  recriota  7852
  Copyright terms: Public domain W3C validator