ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rereceu GIF version

Theorem rereceu 7887
Description: The reciprocal from axprecex 7878 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.)
Assertion
Ref Expression
rereceu ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem rereceu
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axprecex 7878 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
2 simpr 110 . . . 4 ((0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → (𝐴 · 𝑥) = 1)
32reximi 2574 . . 3 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
41, 3syl 14 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
5 eqtr3 2197 . . . . 5 (((𝐴 · 𝑥) = 1 ∧ (𝐴 · 𝑦) = 1) → (𝐴 · 𝑥) = (𝐴 · 𝑦))
6 axprecex 7878 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑧 ∈ ℝ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))
76adantr 276 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∃𝑧 ∈ ℝ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))
8 axresscn 7858 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
9 simpll 527 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐴 ∈ ℝ)
108, 9sselid 3153 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐴 ∈ ℂ)
11 simprl 529 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
128, 11sselid 3153 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
13 axmulcom 7869 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) = (𝑥 · 𝐴))
1410, 12, 13syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 · 𝑥) = (𝑥 · 𝐴))
15 simprr 531 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
168, 15sselid 3153 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
17 axmulcom 7869 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) = (𝑦 · 𝐴))
1810, 16, 17syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 · 𝑦) = (𝑦 · 𝐴))
1914, 18eqeq12d 2192 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
2019adantr 276 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
21 oveq1 5881 . . . . . . . . 9 ((𝑥 · 𝐴) = (𝑦 · 𝐴) → ((𝑥 · 𝐴) · 𝑧) = ((𝑦 · 𝐴) · 𝑧))
2220, 21syl6bi 163 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) → ((𝑥 · 𝐴) · 𝑧) = ((𝑦 · 𝐴) · 𝑧)))
2312adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝑥 ∈ ℂ)
2410adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝐴 ∈ ℂ)
25 simprl 529 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝑧 ∈ ℝ)
268, 25sselid 3153 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝑧 ∈ ℂ)
27 axmulass 7871 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝐴) · 𝑧) = (𝑥 · (𝐴 · 𝑧)))
2823, 24, 26, 27syl3anc 1238 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝑥 · 𝐴) · 𝑧) = (𝑥 · (𝐴 · 𝑧)))
2916adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝑦 ∈ ℂ)
30 axmulass 7871 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑦 · 𝐴) · 𝑧) = (𝑦 · (𝐴 · 𝑧)))
3129, 24, 26, 30syl3anc 1238 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝑦 · 𝐴) · 𝑧) = (𝑦 · (𝐴 · 𝑧)))
3228, 31eqeq12d 2192 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → (((𝑥 · 𝐴) · 𝑧) = ((𝑦 · 𝐴) · 𝑧) ↔ (𝑥 · (𝐴 · 𝑧)) = (𝑦 · (𝐴 · 𝑧))))
3322, 32sylibd 149 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) → (𝑥 · (𝐴 · 𝑧)) = (𝑦 · (𝐴 · 𝑧))))
34 oveq2 5882 . . . . . . . . . 10 ((𝐴 · 𝑧) = 1 → (𝑥 · (𝐴 · 𝑧)) = (𝑥 · 1))
3534ad2antll 491 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1)) → (𝑥 · (𝐴 · 𝑧)) = (𝑥 · 1))
36 ax1rid 7875 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 · 1) = 𝑥)
3711, 36syl 14 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 1) = 𝑥)
3835, 37sylan9eqr 2232 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → (𝑥 · (𝐴 · 𝑧)) = 𝑥)
39 oveq2 5882 . . . . . . . . . 10 ((𝐴 · 𝑧) = 1 → (𝑦 · (𝐴 · 𝑧)) = (𝑦 · 1))
4039ad2antll 491 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1)) → (𝑦 · (𝐴 · 𝑧)) = (𝑦 · 1))
41 ax1rid 7875 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑦 · 1) = 𝑦)
4241ad2antll 491 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑦 · 1) = 𝑦)
4340, 42sylan9eqr 2232 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → (𝑦 · (𝐴 · 𝑧)) = 𝑦)
4438, 43eqeq12d 2192 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝑥 · (𝐴 · 𝑧)) = (𝑦 · (𝐴 · 𝑧)) ↔ 𝑥 = 𝑦))
4533, 44sylibd 149 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) → 𝑥 = 𝑦))
467, 45rexlimddv 2599 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) → 𝑥 = 𝑦))
475, 46syl5 32 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (((𝐴 · 𝑥) = 1 ∧ (𝐴 · 𝑦) = 1) → 𝑥 = 𝑦))
4847ralrimivva 2559 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((𝐴 · 𝑥) = 1 ∧ (𝐴 · 𝑦) = 1) → 𝑥 = 𝑦))
49 oveq2 5882 . . . . 5 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
5049eqeq1d 2186 . . . 4 (𝑥 = 𝑦 → ((𝐴 · 𝑥) = 1 ↔ (𝐴 · 𝑦) = 1))
5150rmo4 2930 . . 3 (∃*𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((𝐴 · 𝑥) = 1 ∧ (𝐴 · 𝑦) = 1) → 𝑥 = 𝑦))
5248, 51sylibr 134 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃*𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
53 reu5 2689 . 2 (∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 ↔ (∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 ∧ ∃*𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
544, 52, 53sylanbrc 417 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  wrex 2456  ∃!wreu 2457  ∃*wrmo 2458   class class class wbr 4003  (class class class)co 5874  cc 7808  cr 7809  0cc0 7810  1c1 7811   < cltrr 7814   · cmul 7815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-eprel 4289  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-1o 6416  df-2o 6417  df-oadd 6420  df-omul 6421  df-er 6534  df-ec 6536  df-qs 6540  df-ni 7302  df-pli 7303  df-mi 7304  df-lti 7305  df-plpq 7342  df-mpq 7343  df-enq 7345  df-nqqs 7346  df-plqqs 7347  df-mqqs 7348  df-1nqqs 7349  df-rq 7350  df-ltnqqs 7351  df-enq0 7422  df-nq0 7423  df-0nq0 7424  df-plq0 7425  df-mq0 7426  df-inp 7464  df-i1p 7465  df-iplp 7466  df-imp 7467  df-iltp 7468  df-enr 7724  df-nr 7725  df-plr 7726  df-mr 7727  df-ltr 7728  df-0r 7729  df-1r 7730  df-m1r 7731  df-c 7816  df-0 7817  df-1 7818  df-r 7820  df-mul 7822  df-lt 7823
This theorem is referenced by:  recriota  7888
  Copyright terms: Public domain W3C validator