ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rereceu GIF version

Theorem rereceu 7956
Description: The reciprocal from axprecex 7947 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.)
Assertion
Ref Expression
rereceu ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Distinct variable group:   𝑥,𝐴

Proof of Theorem rereceu
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axprecex 7947 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1))
2 simpr 110 . . . 4 ((0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → (𝐴 · 𝑥) = 1)
32reximi 2594 . . 3 (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
41, 3syl 14 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
5 eqtr3 2216 . . . . 5 (((𝐴 · 𝑥) = 1 ∧ (𝐴 · 𝑦) = 1) → (𝐴 · 𝑥) = (𝐴 · 𝑦))
6 axprecex 7947 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑧 ∈ ℝ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))
76adantr 276 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∃𝑧 ∈ ℝ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))
8 axresscn 7927 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
9 simpll 527 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐴 ∈ ℝ)
108, 9sselid 3181 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝐴 ∈ ℂ)
11 simprl 529 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
128, 11sselid 3181 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
13 axmulcom 7938 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) = (𝑥 · 𝐴))
1410, 12, 13syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 · 𝑥) = (𝑥 · 𝐴))
15 simprr 531 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
168, 15sselid 3181 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
17 axmulcom 7938 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) = (𝑦 · 𝐴))
1810, 16, 17syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝐴 · 𝑦) = (𝑦 · 𝐴))
1914, 18eqeq12d 2211 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
2019adantr 276 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
21 oveq1 5929 . . . . . . . . 9 ((𝑥 · 𝐴) = (𝑦 · 𝐴) → ((𝑥 · 𝐴) · 𝑧) = ((𝑦 · 𝐴) · 𝑧))
2220, 21biimtrdi 163 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) → ((𝑥 · 𝐴) · 𝑧) = ((𝑦 · 𝐴) · 𝑧)))
2312adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝑥 ∈ ℂ)
2410adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝐴 ∈ ℂ)
25 simprl 529 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝑧 ∈ ℝ)
268, 25sselid 3181 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝑧 ∈ ℂ)
27 axmulass 7940 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝐴) · 𝑧) = (𝑥 · (𝐴 · 𝑧)))
2823, 24, 26, 27syl3anc 1249 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝑥 · 𝐴) · 𝑧) = (𝑥 · (𝐴 · 𝑧)))
2916adantr 276 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → 𝑦 ∈ ℂ)
30 axmulass 7940 . . . . . . . . . 10 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑦 · 𝐴) · 𝑧) = (𝑦 · (𝐴 · 𝑧)))
3129, 24, 26, 30syl3anc 1249 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝑦 · 𝐴) · 𝑧) = (𝑦 · (𝐴 · 𝑧)))
3228, 31eqeq12d 2211 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → (((𝑥 · 𝐴) · 𝑧) = ((𝑦 · 𝐴) · 𝑧) ↔ (𝑥 · (𝐴 · 𝑧)) = (𝑦 · (𝐴 · 𝑧))))
3322, 32sylibd 149 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) → (𝑥 · (𝐴 · 𝑧)) = (𝑦 · (𝐴 · 𝑧))))
34 oveq2 5930 . . . . . . . . . 10 ((𝐴 · 𝑧) = 1 → (𝑥 · (𝐴 · 𝑧)) = (𝑥 · 1))
3534ad2antll 491 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1)) → (𝑥 · (𝐴 · 𝑧)) = (𝑥 · 1))
36 ax1rid 7944 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥 · 1) = 𝑥)
3711, 36syl 14 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 1) = 𝑥)
3835, 37sylan9eqr 2251 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → (𝑥 · (𝐴 · 𝑧)) = 𝑥)
39 oveq2 5930 . . . . . . . . . 10 ((𝐴 · 𝑧) = 1 → (𝑦 · (𝐴 · 𝑧)) = (𝑦 · 1))
4039ad2antll 491 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1)) → (𝑦 · (𝐴 · 𝑧)) = (𝑦 · 1))
41 ax1rid 7944 . . . . . . . . . 10 (𝑦 ∈ ℝ → (𝑦 · 1) = 𝑦)
4241ad2antll 491 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑦 · 1) = 𝑦)
4340, 42sylan9eqr 2251 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → (𝑦 · (𝐴 · 𝑧)) = 𝑦)
4438, 43eqeq12d 2211 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝑥 · (𝐴 · 𝑧)) = (𝑦 · (𝐴 · 𝑧)) ↔ 𝑥 = 𝑦))
4533, 44sylibd 149 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) ∧ (𝑧 ∈ ℝ ∧ (0 < 𝑧 ∧ (𝐴 · 𝑧) = 1))) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) → 𝑥 = 𝑦))
467, 45rexlimddv 2619 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝐴 · 𝑥) = (𝐴 · 𝑦) → 𝑥 = 𝑦))
475, 46syl5 32 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (((𝐴 · 𝑥) = 1 ∧ (𝐴 · 𝑦) = 1) → 𝑥 = 𝑦))
4847ralrimivva 2579 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((𝐴 · 𝑥) = 1 ∧ (𝐴 · 𝑦) = 1) → 𝑥 = 𝑦))
49 oveq2 5930 . . . . 5 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
5049eqeq1d 2205 . . . 4 (𝑥 = 𝑦 → ((𝐴 · 𝑥) = 1 ↔ (𝐴 · 𝑦) = 1))
5150rmo4 2957 . . 3 (∃*𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (((𝐴 · 𝑥) = 1 ∧ (𝐴 · 𝑦) = 1) → 𝑥 = 𝑦))
5248, 51sylibr 134 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃*𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
53 reu5 2714 . 2 (∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 ↔ (∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 ∧ ∃*𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
544, 52, 53sylanbrc 417 1 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃!𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wrex 2476  ∃!wreu 2477  ∃*wrmo 2478   class class class wbr 4033  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  1c1 7880   < cltrr 7883   · cmul 7884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-i1p 7534  df-iplp 7535  df-imp 7536  df-iltp 7537  df-enr 7793  df-nr 7794  df-plr 7795  df-mr 7796  df-ltr 7797  df-0r 7798  df-1r 7799  df-m1r 7800  df-c 7885  df-0 7886  df-1 7887  df-r 7889  df-mul 7891  df-lt 7892
This theorem is referenced by:  recriota  7957
  Copyright terms: Public domain W3C validator