ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funinsn GIF version

Theorem funinsn 5332
Description: A function based on the singleton of an ordered pair. Unlike funsng 5329, this holds even if 𝐴 or 𝐵 is a proper class. (Contributed by Jim Kingdon, 17-Apr-2022.)
Assertion
Ref Expression
funinsn Fun ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))

Proof of Theorem funinsn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3398 . . . 4 ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ⊆ (𝑉 × 𝑊)
2 xpss 4791 . . . 4 (𝑉 × 𝑊) ⊆ (V × V)
31, 2sstri 3206 . . 3 ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ⊆ (V × V)
4 df-rel 4690 . . 3 (Rel ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ⊆ (V × V))
53, 4mpbir 146 . 2 Rel ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))
6 elin 3360 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ∧ ⟨𝑥, 𝑦⟩ ∈ (𝑉 × 𝑊)))
76simplbi 274 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
8 elsni 3656 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
97, 8syl 14 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
10 vex 2776 . . . . . . . 8 𝑥 ∈ V
11 vex 2776 . . . . . . . 8 𝑦 ∈ V
1210, 11opth 4289 . . . . . . 7 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
139, 12sylib 122 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → (𝑥 = 𝐴𝑦 = 𝐵))
1413simprd 114 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → 𝑦 = 𝐵)
15 elin 3360 . . . . . . . . 9 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ (⟨𝑥, 𝑧⟩ ∈ {⟨𝐴, 𝐵⟩} ∧ ⟨𝑥, 𝑧⟩ ∈ (𝑉 × 𝑊)))
1615simplbi 274 . . . . . . . 8 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑧⟩ ∈ {⟨𝐴, 𝐵⟩})
17 elsni 3656 . . . . . . . 8 (⟨𝑥, 𝑧⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝑥, 𝑧⟩ = ⟨𝐴, 𝐵⟩)
1816, 17syl 14 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑧⟩ = ⟨𝐴, 𝐵⟩)
19 vex 2776 . . . . . . . 8 𝑧 ∈ V
2010, 19opth 4289 . . . . . . 7 (⟨𝑥, 𝑧⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑧 = 𝐵))
2118, 20sylib 122 . . . . . 6 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → (𝑥 = 𝐴𝑧 = 𝐵))
2221simprd 114 . . . . 5 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → 𝑧 = 𝐵)
23 eqtr3 2226 . . . . 5 ((𝑦 = 𝐵𝑧 = 𝐵) → 𝑦 = 𝑧)
2414, 22, 23syl2an 289 . . . 4 ((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧)
2524gen2 1474 . . 3 𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧)
2625ax-gen 1473 . 2 𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧)
27 dffun4 5291 . 2 (Fun ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ (Rel ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧)))
285, 26, 27mpbir2an 945 1 Fun ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371   = wceq 1373  wcel 2177  Vcvv 2773  cin 3169  wss 3170  {csn 3638  cop 3641   × cxp 4681  Rel wrel 4688  Fun wfun 5274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-fun 5282
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator