Step | Hyp | Ref
| Expression |
1 | | inss2 3358 |
. . . 4
⊢
({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ⊆ (𝑉 × 𝑊) |
2 | | xpss 4736 |
. . . 4
⊢ (𝑉 × 𝑊) ⊆ (V × V) |
3 | 1, 2 | sstri 3166 |
. . 3
⊢
({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ⊆ (V × V) |
4 | | df-rel 4635 |
. . 3
⊢ (Rel
({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ⊆ (V × V)) |
5 | 3, 4 | mpbir 146 |
. 2
⊢ Rel
({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) |
6 | | elin 3320 |
. . . . . . . . 9
⊢
(⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ∧ ⟨𝑥, 𝑦⟩ ∈ (𝑉 × 𝑊))) |
7 | 6 | simplbi 274 |
. . . . . . . 8
⊢
(⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩}) |
8 | | elsni 3612 |
. . . . . . . 8
⊢
(⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩) |
9 | 7, 8 | syl 14 |
. . . . . . 7
⊢
(⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩) |
10 | | vex 2742 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
11 | | vex 2742 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
12 | 10, 11 | opth 4239 |
. . . . . . 7
⊢
(⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
13 | 9, 12 | sylib 122 |
. . . . . 6
⊢
(⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
14 | 13 | simprd 114 |
. . . . 5
⊢
(⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → 𝑦 = 𝐵) |
15 | | elin 3320 |
. . . . . . . . 9
⊢
(⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ (⟨𝑥, 𝑧⟩ ∈ {⟨𝐴, 𝐵⟩} ∧ ⟨𝑥, 𝑧⟩ ∈ (𝑉 × 𝑊))) |
16 | 15 | simplbi 274 |
. . . . . . . 8
⊢
(⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑧⟩ ∈ {⟨𝐴, 𝐵⟩}) |
17 | | elsni 3612 |
. . . . . . . 8
⊢
(⟨𝑥, 𝑧⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝑥, 𝑧⟩ = ⟨𝐴, 𝐵⟩) |
18 | 16, 17 | syl 14 |
. . . . . . 7
⊢
(⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑧⟩ = ⟨𝐴, 𝐵⟩) |
19 | | vex 2742 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
20 | 10, 19 | opth 4239 |
. . . . . . 7
⊢
(⟨𝑥, 𝑧⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴 ∧ 𝑧 = 𝐵)) |
21 | 18, 20 | sylib 122 |
. . . . . 6
⊢
(⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → (𝑥 = 𝐴 ∧ 𝑧 = 𝐵)) |
22 | 21 | simprd 114 |
. . . . 5
⊢
(⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → 𝑧 = 𝐵) |
23 | | eqtr3 2197 |
. . . . 5
⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐵) → 𝑦 = 𝑧) |
24 | 14, 22, 23 | syl2an 289 |
. . . 4
⊢
((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧) |
25 | 24 | gen2 1450 |
. . 3
⊢
∀𝑦∀𝑧((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧) |
26 | 25 | ax-gen 1449 |
. 2
⊢
∀𝑥∀𝑦∀𝑧((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧) |
27 | | dffun4 5229 |
. 2
⊢ (Fun
({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ (Rel ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ∀𝑥∀𝑦∀𝑧((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧))) |
28 | 5, 26, 27 | mpbir2an 942 |
1
⊢ Fun
({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) |