ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funinsn GIF version

Theorem funinsn 5369
Description: A function based on the singleton of an ordered pair. Unlike funsng 5366, this holds even if 𝐴 or 𝐵 is a proper class. (Contributed by Jim Kingdon, 17-Apr-2022.)
Assertion
Ref Expression
funinsn Fun ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))

Proof of Theorem funinsn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3425 . . . 4 ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ⊆ (𝑉 × 𝑊)
2 xpss 4826 . . . 4 (𝑉 × 𝑊) ⊆ (V × V)
31, 2sstri 3233 . . 3 ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ⊆ (V × V)
4 df-rel 4725 . . 3 (Rel ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ⊆ (V × V))
53, 4mpbir 146 . 2 Rel ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))
6 elin 3387 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ∧ ⟨𝑥, 𝑦⟩ ∈ (𝑉 × 𝑊)))
76simplbi 274 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
8 elsni 3684 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
97, 8syl 14 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
10 vex 2802 . . . . . . . 8 𝑥 ∈ V
11 vex 2802 . . . . . . . 8 𝑦 ∈ V
1210, 11opth 4322 . . . . . . 7 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
139, 12sylib 122 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → (𝑥 = 𝐴𝑦 = 𝐵))
1413simprd 114 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → 𝑦 = 𝐵)
15 elin 3387 . . . . . . . . 9 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ (⟨𝑥, 𝑧⟩ ∈ {⟨𝐴, 𝐵⟩} ∧ ⟨𝑥, 𝑧⟩ ∈ (𝑉 × 𝑊)))
1615simplbi 274 . . . . . . . 8 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑧⟩ ∈ {⟨𝐴, 𝐵⟩})
17 elsni 3684 . . . . . . . 8 (⟨𝑥, 𝑧⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝑥, 𝑧⟩ = ⟨𝐴, 𝐵⟩)
1816, 17syl 14 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑧⟩ = ⟨𝐴, 𝐵⟩)
19 vex 2802 . . . . . . . 8 𝑧 ∈ V
2010, 19opth 4322 . . . . . . 7 (⟨𝑥, 𝑧⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑧 = 𝐵))
2118, 20sylib 122 . . . . . 6 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → (𝑥 = 𝐴𝑧 = 𝐵))
2221simprd 114 . . . . 5 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → 𝑧 = 𝐵)
23 eqtr3 2249 . . . . 5 ((𝑦 = 𝐵𝑧 = 𝐵) → 𝑦 = 𝑧)
2414, 22, 23syl2an 289 . . . 4 ((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧)
2524gen2 1496 . . 3 𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧)
2625ax-gen 1495 . 2 𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧)
27 dffun4 5328 . 2 (Fun ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ (Rel ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧)))
285, 26, 27mpbir2an 948 1 Fun ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1393   = wceq 1395  wcel 2200  Vcvv 2799  cin 3196  wss 3197  {csn 3666  cop 3669   × cxp 4716  Rel wrel 4723  Fun wfun 5311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-fun 5319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator