ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funinsn GIF version

Theorem funinsn 5049
Description: A function based on the singleton of an ordered pair. Unlike funsng 5046, this holds even if 𝐴 or 𝐵 is a proper class. (Contributed by Jim Kingdon, 17-Apr-2022.)
Assertion
Ref Expression
funinsn Fun ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))

Proof of Theorem funinsn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3219 . . . 4 ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ⊆ (𝑉 × 𝑊)
2 xpss 4534 . . . 4 (𝑉 × 𝑊) ⊆ (V × V)
31, 2sstri 3032 . . 3 ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ⊆ (V × V)
4 df-rel 4435 . . 3 (Rel ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ⊆ (V × V))
53, 4mpbir 144 . 2 Rel ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))
6 elin 3181 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ∧ ⟨𝑥, 𝑦⟩ ∈ (𝑉 × 𝑊)))
76simplbi 268 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
8 elsni 3459 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
97, 8syl 14 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
10 vex 2622 . . . . . . . 8 𝑥 ∈ V
11 vex 2622 . . . . . . . 8 𝑦 ∈ V
1210, 11opth 4055 . . . . . . 7 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
139, 12sylib 120 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → (𝑥 = 𝐴𝑦 = 𝐵))
1413simprd 112 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → 𝑦 = 𝐵)
15 elin 3181 . . . . . . . . 9 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ (⟨𝑥, 𝑧⟩ ∈ {⟨𝐴, 𝐵⟩} ∧ ⟨𝑥, 𝑧⟩ ∈ (𝑉 × 𝑊)))
1615simplbi 268 . . . . . . . 8 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑧⟩ ∈ {⟨𝐴, 𝐵⟩})
17 elsni 3459 . . . . . . . 8 (⟨𝑥, 𝑧⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝑥, 𝑧⟩ = ⟨𝐴, 𝐵⟩)
1816, 17syl 14 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑧⟩ = ⟨𝐴, 𝐵⟩)
19 vex 2622 . . . . . . . 8 𝑧 ∈ V
2010, 19opth 4055 . . . . . . 7 (⟨𝑥, 𝑧⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑧 = 𝐵))
2118, 20sylib 120 . . . . . 6 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → (𝑥 = 𝐴𝑧 = 𝐵))
2221simprd 112 . . . . 5 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → 𝑧 = 𝐵)
23 eqtr3 2107 . . . . 5 ((𝑦 = 𝐵𝑧 = 𝐵) → 𝑦 = 𝑧)
2414, 22, 23syl2an 283 . . . 4 ((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧)
2524gen2 1384 . . 3 𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧)
2625ax-gen 1383 . 2 𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧)
27 dffun4 5013 . 2 (Fun ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ (Rel ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧)))
285, 26, 27mpbir2an 888 1 Fun ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1287   = wceq 1289  wcel 1438  Vcvv 2619  cin 2996  wss 2997  {csn 3441  cop 3444   × cxp 4426  Rel wrel 4433  Fun wfun 4996
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-fun 5004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator