ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funinsn GIF version

Theorem funinsn 5247
Description: A function based on the singleton of an ordered pair. Unlike funsng 5244, this holds even if 𝐴 or 𝐵 is a proper class. (Contributed by Jim Kingdon, 17-Apr-2022.)
Assertion
Ref Expression
funinsn Fun ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))

Proof of Theorem funinsn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3348 . . . 4 ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ⊆ (𝑉 × 𝑊)
2 xpss 4719 . . . 4 (𝑉 × 𝑊) ⊆ (V × V)
31, 2sstri 3156 . . 3 ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ⊆ (V × V)
4 df-rel 4618 . . 3 (Rel ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ⊆ (V × V))
53, 4mpbir 145 . 2 Rel ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))
6 elin 3310 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ∧ ⟨𝑥, 𝑦⟩ ∈ (𝑉 × 𝑊)))
76simplbi 272 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
8 elsni 3601 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
97, 8syl 14 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
10 vex 2733 . . . . . . . 8 𝑥 ∈ V
11 vex 2733 . . . . . . . 8 𝑦 ∈ V
1210, 11opth 4222 . . . . . . 7 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
139, 12sylib 121 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → (𝑥 = 𝐴𝑦 = 𝐵))
1413simprd 113 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → 𝑦 = 𝐵)
15 elin 3310 . . . . . . . . 9 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ (⟨𝑥, 𝑧⟩ ∈ {⟨𝐴, 𝐵⟩} ∧ ⟨𝑥, 𝑧⟩ ∈ (𝑉 × 𝑊)))
1615simplbi 272 . . . . . . . 8 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑧⟩ ∈ {⟨𝐴, 𝐵⟩})
17 elsni 3601 . . . . . . . 8 (⟨𝑥, 𝑧⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝑥, 𝑧⟩ = ⟨𝐴, 𝐵⟩)
1816, 17syl 14 . . . . . . 7 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → ⟨𝑥, 𝑧⟩ = ⟨𝐴, 𝐵⟩)
19 vex 2733 . . . . . . . 8 𝑧 ∈ V
2010, 19opth 4222 . . . . . . 7 (⟨𝑥, 𝑧⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑧 = 𝐵))
2118, 20sylib 121 . . . . . 6 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → (𝑥 = 𝐴𝑧 = 𝐵))
2221simprd 113 . . . . 5 (⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) → 𝑧 = 𝐵)
23 eqtr3 2190 . . . . 5 ((𝑦 = 𝐵𝑧 = 𝐵) → 𝑦 = 𝑧)
2414, 22, 23syl2an 287 . . . 4 ((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧)
2524gen2 1443 . . 3 𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧)
2625ax-gen 1442 . 2 𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧)
27 dffun4 5209 . 2 (Fun ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ↔ (Rel ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊)) ∧ ⟨𝑥, 𝑧⟩ ∈ ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))) → 𝑦 = 𝑧)))
285, 26, 27mpbir2an 937 1 Fun ({⟨𝐴, 𝐵⟩} ∩ (𝑉 × 𝑊))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1346   = wceq 1348  wcel 2141  Vcvv 2730  cin 3120  wss 3121  {csn 3583  cop 3586   × cxp 4609  Rel wrel 4616  Fun wfun 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-fun 5200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator