| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lteupri | GIF version | ||
| Description: The difference from ltexpri 7746 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.) |
| Ref | Expression |
|---|---|
| lteupri | ⊢ (𝐴<P 𝐵 → ∃!𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexpri 7746 | . 2 ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) | |
| 2 | ltrelpr 7638 | . . . . 5 ⊢ <P ⊆ (P × P) | |
| 3 | 2 | brel 4735 | . . . 4 ⊢ (𝐴<P 𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
| 4 | 3 | simpld 112 | . . 3 ⊢ (𝐴<P 𝐵 → 𝐴 ∈ P) |
| 5 | eqtr3 2226 | . . . . . . . 8 ⊢ (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → (𝐴 +P 𝑥) = (𝐴 +P 𝑦)) | |
| 6 | addcanprg 7749 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝐴 +P 𝑥) = (𝐴 +P 𝑦) → 𝑥 = 𝑦)) | |
| 7 | 5, 6 | syl5 32 | . . . . . . 7 ⊢ ((𝐴 ∈ P ∧ 𝑥 ∈ P ∧ 𝑦 ∈ P) → (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
| 8 | 7 | 3expa 1206 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝑥 ∈ P) ∧ 𝑦 ∈ P) → (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
| 9 | 8 | ralrimiva 2580 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝑥 ∈ P) → ∀𝑦 ∈ P (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
| 10 | 9 | ralrimiva 2580 | . . . 4 ⊢ (𝐴 ∈ P → ∀𝑥 ∈ P ∀𝑦 ∈ P (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
| 11 | oveq2 5965 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐴 +P 𝑥) = (𝐴 +P 𝑦)) | |
| 12 | 11 | eqeq1d 2215 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P 𝑦) = 𝐵)) |
| 13 | 12 | rmo4 2970 | . . . 4 ⊢ (∃*𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵 ↔ ∀𝑥 ∈ P ∀𝑦 ∈ P (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
| 14 | 10, 13 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ P → ∃*𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
| 15 | 4, 14 | syl 14 | . 2 ⊢ (𝐴<P 𝐵 → ∃*𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
| 16 | reu5 2724 | . 2 ⊢ (∃!𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵 ↔ (∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵 ∧ ∃*𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵)) | |
| 17 | 1, 15, 16 | sylanbrc 417 | 1 ⊢ (𝐴<P 𝐵 → ∃!𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ∃!wreu 2487 ∃*wrmo 2488 class class class wbr 4051 (class class class)co 5957 Pcnp 7424 +P cpp 7426 <P cltp 7428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-eprel 4344 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-1o 6515 df-2o 6516 df-oadd 6519 df-omul 6520 df-er 6633 df-ec 6635 df-qs 6639 df-ni 7437 df-pli 7438 df-mi 7439 df-lti 7440 df-plpq 7477 df-mpq 7478 df-enq 7480 df-nqqs 7481 df-plqqs 7482 df-mqqs 7483 df-1nqqs 7484 df-rq 7485 df-ltnqqs 7486 df-enq0 7557 df-nq0 7558 df-0nq0 7559 df-plq0 7560 df-mq0 7561 df-inp 7599 df-iplp 7601 df-iltp 7603 |
| This theorem is referenced by: srpospr 7916 |
| Copyright terms: Public domain | W3C validator |