ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lteupri GIF version

Theorem lteupri 7679
Description: The difference from ltexpri 7675 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.)
Assertion
Ref Expression
lteupri (𝐴<P 𝐵 → ∃!𝑥P (𝐴 +P 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem lteupri
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ltexpri 7675 . 2 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
2 ltrelpr 7567 . . . . 5 <P ⊆ (P × P)
32brel 4712 . . . 4 (𝐴<P 𝐵 → (𝐴P𝐵P))
43simpld 112 . . 3 (𝐴<P 𝐵𝐴P)
5 eqtr3 2213 . . . . . . . 8 (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → (𝐴 +P 𝑥) = (𝐴 +P 𝑦))
6 addcanprg 7678 . . . . . . . 8 ((𝐴P𝑥P𝑦P) → ((𝐴 +P 𝑥) = (𝐴 +P 𝑦) → 𝑥 = 𝑦))
75, 6syl5 32 . . . . . . 7 ((𝐴P𝑥P𝑦P) → (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦))
873expa 1205 . . . . . 6 (((𝐴P𝑥P) ∧ 𝑦P) → (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦))
98ralrimiva 2567 . . . . 5 ((𝐴P𝑥P) → ∀𝑦P (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦))
109ralrimiva 2567 . . . 4 (𝐴P → ∀𝑥P𝑦P (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦))
11 oveq2 5927 . . . . . 6 (𝑥 = 𝑦 → (𝐴 +P 𝑥) = (𝐴 +P 𝑦))
1211eqeq1d 2202 . . . . 5 (𝑥 = 𝑦 → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P 𝑦) = 𝐵))
1312rmo4 2954 . . . 4 (∃*𝑥P (𝐴 +P 𝑥) = 𝐵 ↔ ∀𝑥P𝑦P (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦))
1410, 13sylibr 134 . . 3 (𝐴P → ∃*𝑥P (𝐴 +P 𝑥) = 𝐵)
154, 14syl 14 . 2 (𝐴<P 𝐵 → ∃*𝑥P (𝐴 +P 𝑥) = 𝐵)
16 reu5 2711 . 2 (∃!𝑥P (𝐴 +P 𝑥) = 𝐵 ↔ (∃𝑥P (𝐴 +P 𝑥) = 𝐵 ∧ ∃*𝑥P (𝐴 +P 𝑥) = 𝐵))
171, 15, 16sylanbrc 417 1 (𝐴<P 𝐵 → ∃!𝑥P (𝐴 +P 𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wral 2472  wrex 2473  ∃!wreu 2474  ∃*wrmo 2475   class class class wbr 4030  (class class class)co 5919  Pcnp 7353   +P cpp 7355  <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-iplp 7530  df-iltp 7532
This theorem is referenced by:  srpospr  7845
  Copyright terms: Public domain W3C validator