ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lteupri GIF version

Theorem lteupri 7326
Description: The difference from ltexpri 7322 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.)
Assertion
Ref Expression
lteupri (𝐴<P 𝐵 → ∃!𝑥P (𝐴 +P 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem lteupri
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ltexpri 7322 . 2 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
2 ltrelpr 7214 . . . . 5 <P ⊆ (P × P)
32brel 4529 . . . 4 (𝐴<P 𝐵 → (𝐴P𝐵P))
43simpld 111 . . 3 (𝐴<P 𝐵𝐴P)
5 eqtr3 2119 . . . . . . . 8 (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → (𝐴 +P 𝑥) = (𝐴 +P 𝑦))
6 addcanprg 7325 . . . . . . . 8 ((𝐴P𝑥P𝑦P) → ((𝐴 +P 𝑥) = (𝐴 +P 𝑦) → 𝑥 = 𝑦))
75, 6syl5 32 . . . . . . 7 ((𝐴P𝑥P𝑦P) → (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦))
873expa 1149 . . . . . 6 (((𝐴P𝑥P) ∧ 𝑦P) → (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦))
98ralrimiva 2464 . . . . 5 ((𝐴P𝑥P) → ∀𝑦P (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦))
109ralrimiva 2464 . . . 4 (𝐴P → ∀𝑥P𝑦P (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦))
11 oveq2 5714 . . . . . 6 (𝑥 = 𝑦 → (𝐴 +P 𝑥) = (𝐴 +P 𝑦))
1211eqeq1d 2108 . . . . 5 (𝑥 = 𝑦 → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P 𝑦) = 𝐵))
1312rmo4 2830 . . . 4 (∃*𝑥P (𝐴 +P 𝑥) = 𝐵 ↔ ∀𝑥P𝑦P (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦))
1410, 13sylibr 133 . . 3 (𝐴P → ∃*𝑥P (𝐴 +P 𝑥) = 𝐵)
154, 14syl 14 . 2 (𝐴<P 𝐵 → ∃*𝑥P (𝐴 +P 𝑥) = 𝐵)
16 reu5 2601 . 2 (∃!𝑥P (𝐴 +P 𝑥) = 𝐵 ↔ (∃𝑥P (𝐴 +P 𝑥) = 𝐵 ∧ ∃*𝑥P (𝐴 +P 𝑥) = 𝐵))
171, 15, 16sylanbrc 411 1 (𝐴<P 𝐵 → ∃!𝑥P (𝐴 +P 𝑥) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 930   = wceq 1299  wcel 1448  wral 2375  wrex 2376  ∃!wreu 2377  ∃*wrmo 2378   class class class wbr 3875  (class class class)co 5706  Pcnp 7000   +P cpp 7002  <P cltp 7004
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-2o 6244  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062  df-enq0 7133  df-nq0 7134  df-0nq0 7135  df-plq0 7136  df-mq0 7137  df-inp 7175  df-iplp 7177  df-iltp 7179
This theorem is referenced by:  srpospr  7478
  Copyright terms: Public domain W3C validator