Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lteupri | GIF version |
Description: The difference from ltexpri 7575 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.) |
Ref | Expression |
---|---|
lteupri | ⊢ (𝐴<P 𝐵 → ∃!𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltexpri 7575 | . 2 ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) | |
2 | ltrelpr 7467 | . . . . 5 ⊢ <P ⊆ (P × P) | |
3 | 2 | brel 4663 | . . . 4 ⊢ (𝐴<P 𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
4 | 3 | simpld 111 | . . 3 ⊢ (𝐴<P 𝐵 → 𝐴 ∈ P) |
5 | eqtr3 2190 | . . . . . . . 8 ⊢ (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → (𝐴 +P 𝑥) = (𝐴 +P 𝑦)) | |
6 | addcanprg 7578 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝐴 +P 𝑥) = (𝐴 +P 𝑦) → 𝑥 = 𝑦)) | |
7 | 5, 6 | syl5 32 | . . . . . . 7 ⊢ ((𝐴 ∈ P ∧ 𝑥 ∈ P ∧ 𝑦 ∈ P) → (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
8 | 7 | 3expa 1198 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝑥 ∈ P) ∧ 𝑦 ∈ P) → (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
9 | 8 | ralrimiva 2543 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝑥 ∈ P) → ∀𝑦 ∈ P (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
10 | 9 | ralrimiva 2543 | . . . 4 ⊢ (𝐴 ∈ P → ∀𝑥 ∈ P ∀𝑦 ∈ P (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
11 | oveq2 5861 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐴 +P 𝑥) = (𝐴 +P 𝑦)) | |
12 | 11 | eqeq1d 2179 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P 𝑦) = 𝐵)) |
13 | 12 | rmo4 2923 | . . . 4 ⊢ (∃*𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵 ↔ ∀𝑥 ∈ P ∀𝑦 ∈ P (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
14 | 10, 13 | sylibr 133 | . . 3 ⊢ (𝐴 ∈ P → ∃*𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
15 | 4, 14 | syl 14 | . 2 ⊢ (𝐴<P 𝐵 → ∃*𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
16 | reu5 2682 | . 2 ⊢ (∃!𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵 ↔ (∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵 ∧ ∃*𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵)) | |
17 | 1, 15, 16 | sylanbrc 415 | 1 ⊢ (𝐴<P 𝐵 → ∃!𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ∃!wreu 2450 ∃*wrmo 2451 class class class wbr 3989 (class class class)co 5853 Pcnp 7253 +P cpp 7255 <P cltp 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-iplp 7430 df-iltp 7432 |
This theorem is referenced by: srpospr 7745 |
Copyright terms: Public domain | W3C validator |