| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lteupri | GIF version | ||
| Description: The difference from ltexpri 7708 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.) |
| Ref | Expression |
|---|---|
| lteupri | ⊢ (𝐴<P 𝐵 → ∃!𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltexpri 7708 | . 2 ⊢ (𝐴<P 𝐵 → ∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) | |
| 2 | ltrelpr 7600 | . . . . 5 ⊢ <P ⊆ (P × P) | |
| 3 | 2 | brel 4725 | . . . 4 ⊢ (𝐴<P 𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈ P)) |
| 4 | 3 | simpld 112 | . . 3 ⊢ (𝐴<P 𝐵 → 𝐴 ∈ P) |
| 5 | eqtr3 2224 | . . . . . . . 8 ⊢ (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → (𝐴 +P 𝑥) = (𝐴 +P 𝑦)) | |
| 6 | addcanprg 7711 | . . . . . . . 8 ⊢ ((𝐴 ∈ P ∧ 𝑥 ∈ P ∧ 𝑦 ∈ P) → ((𝐴 +P 𝑥) = (𝐴 +P 𝑦) → 𝑥 = 𝑦)) | |
| 7 | 5, 6 | syl5 32 | . . . . . . 7 ⊢ ((𝐴 ∈ P ∧ 𝑥 ∈ P ∧ 𝑦 ∈ P) → (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
| 8 | 7 | 3expa 1205 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝑥 ∈ P) ∧ 𝑦 ∈ P) → (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
| 9 | 8 | ralrimiva 2578 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝑥 ∈ P) → ∀𝑦 ∈ P (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
| 10 | 9 | ralrimiva 2578 | . . . 4 ⊢ (𝐴 ∈ P → ∀𝑥 ∈ P ∀𝑦 ∈ P (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
| 11 | oveq2 5942 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐴 +P 𝑥) = (𝐴 +P 𝑦)) | |
| 12 | 11 | eqeq1d 2213 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P 𝑦) = 𝐵)) |
| 13 | 12 | rmo4 2965 | . . . 4 ⊢ (∃*𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵 ↔ ∀𝑥 ∈ P ∀𝑦 ∈ P (((𝐴 +P 𝑥) = 𝐵 ∧ (𝐴 +P 𝑦) = 𝐵) → 𝑥 = 𝑦)) |
| 14 | 10, 13 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ P → ∃*𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
| 15 | 4, 14 | syl 14 | . 2 ⊢ (𝐴<P 𝐵 → ∃*𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
| 16 | reu5 2722 | . 2 ⊢ (∃!𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵 ↔ (∃𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵 ∧ ∃*𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵)) | |
| 17 | 1, 15, 16 | sylanbrc 417 | 1 ⊢ (𝐴<P 𝐵 → ∃!𝑥 ∈ P (𝐴 +P 𝑥) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ∃wrex 2484 ∃!wreu 2485 ∃*wrmo 2486 class class class wbr 4043 (class class class)co 5934 Pcnp 7386 +P cpp 7388 <P cltp 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4334 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-irdg 6446 df-1o 6492 df-2o 6493 df-oadd 6496 df-omul 6497 df-er 6610 df-ec 6612 df-qs 6616 df-ni 7399 df-pli 7400 df-mi 7401 df-lti 7402 df-plpq 7439 df-mpq 7440 df-enq 7442 df-nqqs 7443 df-plqqs 7444 df-mqqs 7445 df-1nqqs 7446 df-rq 7447 df-ltnqqs 7448 df-enq0 7519 df-nq0 7520 df-0nq0 7521 df-plq0 7522 df-mq0 7523 df-inp 7561 df-iplp 7563 df-iltp 7565 |
| This theorem is referenced by: srpospr 7878 |
| Copyright terms: Public domain | W3C validator |