![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expdimp | GIF version |
Description: A deduction version of exportation, followed by importation. (Contributed by NM, 6-Sep-2008.) |
Ref | Expression |
---|---|
exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expdimp | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp3a.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: rexlimdvv 2618 reu6 2950 fun11iun 5522 poxp 6287 smoel 6355 iinerm 6663 suplub2ti 7062 infglbti 7086 infnlbti 7087 prarloclemlo 7556 peano5uzti 9428 lbzbi 9684 ssfzo12bi 10295 cau3lem 11261 summodc 11529 mertenslem2 11682 prodmodclem2 11723 alzdvds 11999 nno 12050 nn0seqcvgd 12182 lcmdvds 12220 divgcdodd 12284 prmpwdvds 12496 cnptoprest 14418 lmss 14425 txlm 14458 |
Copyright terms: Public domain | W3C validator |