Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > expdimp | GIF version |
Description: A deduction version of exportation, followed by importation. (Contributed by NM, 6-Sep-2008.) |
Ref | Expression |
---|---|
exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expdimp | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp3a.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 256 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp 123 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: rexlimdvv 2594 reu6 2919 fun11iun 5463 poxp 6211 smoel 6279 iinerm 6585 suplub2ti 6978 infglbti 7002 infnlbti 7003 prarloclemlo 7456 peano5uzti 9320 lbzbi 9575 ssfzo12bi 10181 cau3lem 11078 summodc 11346 mertenslem2 11499 prodmodclem2 11540 alzdvds 11814 nno 11865 nn0seqcvgd 11995 lcmdvds 12033 divgcdodd 12097 prmpwdvds 12307 cnptoprest 13033 lmss 13040 txlm 13073 |
Copyright terms: Public domain | W3C validator |