| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expdimp | GIF version | ||
| Description: A deduction version of exportation, followed by importation. (Contributed by NM, 6-Sep-2008.) |
| Ref | Expression |
|---|---|
| exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expdimp | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp3a.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: rexlimdvv 2655 reu6 2992 fun11iun 5595 poxp 6384 smoel 6452 iinerm 6762 suplub2ti 7176 infglbti 7200 infnlbti 7201 prarloclemlo 7689 peano5uzti 9563 lbzbi 9819 ssfzo12bi 10439 cau3lem 11633 summodc 11902 mertenslem2 12055 prodmodclem2 12096 alzdvds 12373 nno 12425 nn0seqcvgd 12571 lcmdvds 12609 divgcdodd 12673 prmpwdvds 12886 cnptoprest 14921 lmss 14928 txlm 14961 incistruhgr 15898 |
| Copyright terms: Public domain | W3C validator |