Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > expdimp | GIF version |
Description: A deduction version of exportation, followed by importation. (Contributed by NM, 6-Sep-2008.) |
Ref | Expression |
---|---|
exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expdimp | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp3a.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 256 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp 123 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: rexlimdvv 2590 reu6 2915 fun11iun 5453 poxp 6200 smoel 6268 iinerm 6573 suplub2ti 6966 infglbti 6990 infnlbti 6991 prarloclemlo 7435 peano5uzti 9299 lbzbi 9554 ssfzo12bi 10160 cau3lem 11056 summodc 11324 mertenslem2 11477 prodmodclem2 11518 alzdvds 11792 nno 11843 nn0seqcvgd 11973 lcmdvds 12011 divgcdodd 12075 prmpwdvds 12285 cnptoprest 12889 lmss 12896 txlm 12929 |
Copyright terms: Public domain | W3C validator |