| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expdimp | GIF version | ||
| Description: A deduction version of exportation, followed by importation. (Contributed by NM, 6-Sep-2008.) |
| Ref | Expression |
|---|---|
| exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expdimp | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp3a.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: rexlimdvv 2621 reu6 2953 fun11iun 5528 poxp 6299 smoel 6367 iinerm 6675 suplub2ti 7076 infglbti 7100 infnlbti 7101 prarloclemlo 7580 peano5uzti 9453 lbzbi 9709 ssfzo12bi 10320 cau3lem 11298 summodc 11567 mertenslem2 11720 prodmodclem2 11761 alzdvds 12038 nno 12090 nn0seqcvgd 12236 lcmdvds 12274 divgcdodd 12338 prmpwdvds 12551 cnptoprest 14561 lmss 14568 txlm 14601 |
| Copyright terms: Public domain | W3C validator |