| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expdimp | GIF version | ||
| Description: A deduction version of exportation, followed by importation. (Contributed by NM, 6-Sep-2008.) |
| Ref | Expression |
|---|---|
| exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expdimp | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp3a.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: rexlimdvv 2635 reu6 2972 fun11iun 5569 poxp 6348 smoel 6416 iinerm 6724 suplub2ti 7136 infglbti 7160 infnlbti 7161 prarloclemlo 7649 peano5uzti 9523 lbzbi 9779 ssfzo12bi 10398 cau3lem 11591 summodc 11860 mertenslem2 12013 prodmodclem2 12054 alzdvds 12331 nno 12383 nn0seqcvgd 12529 lcmdvds 12567 divgcdodd 12631 prmpwdvds 12844 cnptoprest 14878 lmss 14885 txlm 14918 incistruhgr 15855 |
| Copyright terms: Public domain | W3C validator |