![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expdimp | GIF version |
Description: A deduction version of exportation, followed by importation. (Contributed by NM, 6-Sep-2008.) |
Ref | Expression |
---|---|
exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expdimp | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp3a.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: rexlimdvv 2618 reu6 2949 fun11iun 5521 poxp 6285 smoel 6353 iinerm 6661 suplub2ti 7060 infglbti 7084 infnlbti 7085 prarloclemlo 7554 peano5uzti 9425 lbzbi 9681 ssfzo12bi 10292 cau3lem 11258 summodc 11526 mertenslem2 11679 prodmodclem2 11720 alzdvds 11996 nno 12047 nn0seqcvgd 12179 lcmdvds 12217 divgcdodd 12281 prmpwdvds 12493 cnptoprest 14407 lmss 14414 txlm 14447 |
Copyright terms: Public domain | W3C validator |