| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expdimp | GIF version | ||
| Description: A deduction version of exportation, followed by importation. (Contributed by NM, 6-Sep-2008.) |
| Ref | Expression |
|---|---|
| exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| expdimp | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp3a.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: rexlimdvv 2631 reu6 2963 fun11iun 5550 poxp 6325 smoel 6393 iinerm 6701 suplub2ti 7110 infglbti 7134 infnlbti 7135 prarloclemlo 7614 peano5uzti 9488 lbzbi 9744 ssfzo12bi 10361 cau3lem 11469 summodc 11738 mertenslem2 11891 prodmodclem2 11932 alzdvds 12209 nno 12261 nn0seqcvgd 12407 lcmdvds 12445 divgcdodd 12509 prmpwdvds 12722 cnptoprest 14755 lmss 14762 txlm 14795 incistruhgr 15730 |
| Copyright terms: Public domain | W3C validator |