![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expdimp | GIF version |
Description: A deduction version of exportation, followed by importation. (Contributed by NM, 6-Sep-2008.) |
Ref | Expression |
---|---|
exp3a.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
expdimp | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exp3a.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: rexlimdvv 2601 reu6 2928 fun11iun 5484 poxp 6235 smoel 6303 iinerm 6609 suplub2ti 7002 infglbti 7026 infnlbti 7027 prarloclemlo 7495 peano5uzti 9363 lbzbi 9618 ssfzo12bi 10227 cau3lem 11125 summodc 11393 mertenslem2 11546 prodmodclem2 11587 alzdvds 11862 nno 11913 nn0seqcvgd 12043 lcmdvds 12081 divgcdodd 12145 prmpwdvds 12355 cnptoprest 13824 lmss 13831 txlm 13864 |
Copyright terms: Public domain | W3C validator |