Step | Hyp | Ref
| Expression |
1 | | nnuz 9501 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 9218 |
. . 3
⊢ (𝜑 → 1 ∈
ℤ) |
3 | | mertens.9 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
4 | 3 | rphalfcld 9645 |
. . . 4
⊢ (𝜑 → (𝐸 / 2) ∈
ℝ+) |
5 | | nn0uz 9500 |
. . . . . 6
⊢
ℕ0 = (ℤ≥‘0) |
6 | | 0zd 9203 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℤ) |
7 | | eqidd 2166 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (𝐾‘𝑗)) |
8 | | mertens.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) |
9 | | mertens.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈
ℂ) |
10 | 9 | abscld 11123 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(abs‘𝐴) ∈
ℝ) |
11 | 8, 10 | eqeltrd 2243 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) ∈ ℝ) |
12 | | mertens.7 |
. . . . . 6
⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝
) |
13 | 5, 6, 7, 11, 12 | isumrecl 11370 |
. . . . 5
⊢ (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) ∈ ℝ) |
14 | 9 | absge0d 11126 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 0 ≤
(abs‘𝐴)) |
15 | 14, 8 | breqtrrd 4010 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 0 ≤
(𝐾‘𝑗)) |
16 | 5, 6, 7, 11, 12, 15 | isumge0 11371 |
. . . . 5
⊢ (𝜑 → 0 ≤ Σ𝑗 ∈ ℕ0
(𝐾‘𝑗)) |
17 | 13, 16 | ge0p1rpd 9663 |
. . . 4
⊢ (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) ∈
ℝ+) |
18 | 4, 17 | rpdivcld 9650 |
. . 3
⊢ (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ∈
ℝ+) |
19 | | eqidd 2166 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (seq0( + , 𝐺)‘𝑚) = (seq0( + , 𝐺)‘𝑚)) |
20 | | mertens.4 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) |
21 | | mertens.5 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
22 | | mertens.8 |
. . . 4
⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝
) |
23 | 5, 6, 20, 21, 22 | isumclim2 11363 |
. . 3
⊢ (𝜑 → seq0( + , 𝐺) ⇝ Σ𝑘 ∈ ℕ0
𝐵) |
24 | 1, 2, 18, 19, 23 | climi2 11229 |
. 2
⊢ (𝜑 → ∃𝑠 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
25 | | eluznn 9538 |
. . . . . . . 8
⊢ ((𝑠 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘𝑠)) → 𝑚 ∈ ℕ) |
26 | 20, 21 | eqeltrd 2243 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
27 | 5, 6, 26 | serf 10409 |
. . . . . . . . . . . 12
⊢ (𝜑 → seq0( + , 𝐺):ℕ0⟶ℂ) |
28 | | nnnn0 9121 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
29 | | ffvelrn 5618 |
. . . . . . . . . . . 12
⊢ ((seq0( +
, 𝐺):ℕ0⟶ℂ ∧
𝑚 ∈
ℕ0) → (seq0( + , 𝐺)‘𝑚) ∈ ℂ) |
30 | 27, 28, 29 | syl2an 287 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (seq0( + , 𝐺)‘𝑚) ∈ ℂ) |
31 | 5, 6, 20, 21, 22 | isumcl 11366 |
. . . . . . . . . . . 12
⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ) |
32 | 31 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0
𝐵 ∈
ℂ) |
33 | 30, 32 | abssubd 11135 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (abs‘((seq0( +
, 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0
𝐵)) =
(abs‘(Σ𝑘 ∈
ℕ0 𝐵
− (seq0( + , 𝐺)‘𝑚)))) |
34 | | eqid 2165 |
. . . . . . . . . . . . . 14
⊢
(ℤ≥‘(𝑚 + 1)) = (ℤ≥‘(𝑚 + 1)) |
35 | 28 | adantl 275 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0) |
36 | | peano2nn0 9154 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ0
→ (𝑚 + 1) ∈
ℕ0) |
37 | 35, 36 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈
ℕ0) |
38 | 37 | nn0zd 9311 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℤ) |
39 | | simpll 519 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) → 𝜑) |
40 | | eluznn0 9537 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑚 + 1) ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘(𝑚 + 1))) → 𝑘 ∈ ℕ0) |
41 | 37, 40 | sylan 281 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) → 𝑘 ∈
ℕ0) |
42 | 39, 41, 20 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) → (𝐺‘𝑘) = 𝐵) |
43 | 39, 41, 21 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘(𝑚 + 1))) → 𝐵 ∈ ℂ) |
44 | 22 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → seq0( + , 𝐺) ∈ dom ⇝
) |
45 | 26 | adantlr 469 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
46 | 5, 37, 45 | iserex 11280 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (seq0( + , 𝐺) ∈ dom ⇝ ↔
seq(𝑚 + 1)( + , 𝐺) ∈ dom ⇝
)) |
47 | 44, 46 | mpbid 146 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → seq(𝑚 + 1)( + , 𝐺) ∈ dom ⇝ ) |
48 | 34, 38, 42, 43, 47 | isumcl 11366 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈
(ℤ≥‘(𝑚 + 1))𝐵 ∈ ℂ) |
49 | 30, 48 | pncan2d 8211 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))𝐵) − (seq0( + , 𝐺)‘𝑚)) = Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))𝐵) |
50 | 20 | adantlr 469 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) |
51 | 21 | adantlr 469 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
52 | 5, 34, 37, 50, 51, 44 | isumsplit 11432 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0
𝐵 = (Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))𝐵)) |
53 | | nncn 8865 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℂ) |
54 | 53 | adantl 275 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ) |
55 | | ax-1cn 7846 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℂ |
56 | | pncan 8104 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑚 + 1)
− 1) = 𝑚) |
57 | 54, 55, 56 | sylancl 410 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) − 1) = 𝑚) |
58 | 57 | oveq2d 5858 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (0...((𝑚 + 1) − 1)) = (0...𝑚)) |
59 | 58 | sumeq1d 11307 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 = Σ𝑘 ∈ (0...𝑚)𝐵) |
60 | | elnn0uz 9503 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℕ0
↔ 𝑘 ∈
(ℤ≥‘0)) |
61 | 60, 50 | sylan2br 286 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘0))
→ (𝐺‘𝑘) = 𝐵) |
62 | 35, 5 | eleqtrdi 2259 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈
(ℤ≥‘0)) |
63 | 60, 51 | sylan2br 286 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘0))
→ 𝐵 ∈
ℂ) |
64 | 61, 62, 63 | fsum3ser 11338 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...𝑚)𝐵 = (seq0( + , 𝐺)‘𝑚)) |
65 | 59, 64 | eqtrd 2198 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 = (seq0( + , 𝐺)‘𝑚)) |
66 | 65 | oveq1d 5857 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))𝐵) = ((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))𝐵)) |
67 | 52, 66 | eqtrd 2198 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0
𝐵 = ((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))𝐵)) |
68 | 67 | oveq1d 5857 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (Σ𝑘 ∈ ℕ0
𝐵 − (seq0( + , 𝐺)‘𝑚)) = (((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))𝐵) − (seq0( + , 𝐺)‘𝑚))) |
69 | 42 | sumeq2dv 11309 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈
(ℤ≥‘(𝑚 + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))𝐵) |
70 | 49, 68, 69 | 3eqtr4d 2208 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (Σ𝑘 ∈ ℕ0
𝐵 − (seq0( + , 𝐺)‘𝑚)) = Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))(𝐺‘𝑘)) |
71 | 70 | fveq2d 5490 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) →
(abs‘(Σ𝑘 ∈
ℕ0 𝐵
− (seq0( + , 𝐺)‘𝑚))) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))(𝐺‘𝑘))) |
72 | 33, 71 | eqtrd 2198 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (abs‘((seq0( +
, 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0
𝐵)) =
(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑚 + 1))(𝐺‘𝑘))) |
73 | 72 | breq1d 3992 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((abs‘((seq0( +
, 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0
𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0
(𝐾‘𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑚 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
74 | 25, 73 | sylan2 284 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ∈ ℕ ∧ 𝑚 ∈ (ℤ≥‘𝑠))) → ((abs‘((seq0( +
, 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0
𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0
(𝐾‘𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑚 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
75 | 74 | anassrs 398 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘𝑠)) → ((abs‘((seq0( +
, 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0
𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0
(𝐾‘𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑚 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
76 | 75 | ralbidva 2462 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → (∀𝑚 ∈
(ℤ≥‘𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ↔ ∀𝑚 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑚 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
77 | | fvoveq1 5865 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (ℤ≥‘(𝑚 + 1)) =
(ℤ≥‘(𝑛 + 1))) |
78 | 77 | sumeq1d 11307 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) |
79 | 78 | fveq2d 5490 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))(𝐺‘𝑘)) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
80 | 79 | breq1d 3992 |
. . . . . 6
⊢ (𝑚 = 𝑛 → ((abs‘Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
81 | 80 | cbvralv 2692 |
. . . . 5
⊢
(∀𝑚 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑚 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ↔ ∀𝑛 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
82 | 76, 81 | bitrdi 195 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → (∀𝑚 ∈
(ℤ≥‘𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ↔ ∀𝑛 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
83 | | mertens.11 |
. . . . . 6
⊢ (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
84 | | 0zd 9203 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → 0 ∈ ℤ) |
85 | 4 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → (𝐸 / 2) ∈
ℝ+) |
86 | 83 | simplbi 272 |
. . . . . . . . . . . . . 14
⊢ (𝜓 → 𝑠 ∈ ℕ) |
87 | 86 | adantl 275 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → 𝑠 ∈ ℕ) |
88 | 87 | nnrpd 9630 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → 𝑠 ∈ ℝ+) |
89 | 85, 88 | rpdivcld 9650 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → ((𝐸 / 2) / 𝑠) ∈
ℝ+) |
90 | 87 | nnzd 9312 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜓) → 𝑠 ∈ ℤ) |
91 | | 1zzd 9218 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜓) → 1 ∈ ℤ) |
92 | 90, 91 | zsubcld 9318 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → (𝑠 − 1) ∈ ℤ) |
93 | 84, 92 | fzfigd 10366 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → (0...(𝑠 − 1)) ∈ Fin) |
94 | | eqid 2165 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘(𝑛 + 1)) = (ℤ≥‘(𝑛 + 1)) |
95 | | elfznn0 10049 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (0...(𝑠 − 1)) → 𝑛 ∈ ℕ0) |
96 | 95 | adantl 275 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → 𝑛 ∈ ℕ0) |
97 | | peano2nn0 9154 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ0) |
98 | 96, 97 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑛 + 1) ∈
ℕ0) |
99 | 98 | nn0zd 9311 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑛 + 1) ∈ ℤ) |
100 | | eqidd 2166 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → (𝐺‘𝑘) = (𝐺‘𝑘)) |
101 | | simplll 523 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → 𝜑) |
102 | | eluznn0 9537 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 + 1) ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘(𝑛 + 1))) → 𝑘 ∈ ℕ0) |
103 | 98, 102 | sylan 281 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → 𝑘 ∈
ℕ0) |
104 | 101, 103,
26 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ≥‘(𝑛 + 1))) → (𝐺‘𝑘) ∈ ℂ) |
105 | 22 | ad2antrr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → seq0( + , 𝐺) ∈ dom ⇝
) |
106 | | simpll 519 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → 𝜑) |
107 | 106, 26 | sylan 281 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
108 | 5, 98, 107 | iserex 11280 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (seq0( + , 𝐺) ∈ dom ⇝ ↔
seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝
)) |
109 | 105, 108 | mpbid 146 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ ) |
110 | 94, 99, 100, 104, 109 | isumcl 11366 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘) ∈ ℂ) |
111 | 110 | abscld 11123 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ∈ ℝ) |
112 | 93, 111 | fsumrecl 11342 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ∈ ℝ) |
113 | | 0red 7900 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → 0 ∈ ℝ) |
114 | | nnnn0 9121 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
115 | 114, 20 | sylan2 284 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) = 𝐵) |
116 | 114, 21 | sylan2 284 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℂ) |
117 | | 1nn0 9130 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℕ0 |
118 | 117 | a1i 9 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 1 ∈
ℕ0) |
119 | 5, 118, 26 | iserex 11280 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (seq0( + , 𝐺) ∈ dom ⇝ ↔
seq1( + , 𝐺) ∈ dom
⇝ )) |
120 | 22, 119 | mpbid 146 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → seq1( + , 𝐺) ∈ dom ⇝
) |
121 | 1, 2, 115, 116, 120 | isumcl 11366 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → Σ𝑘 ∈ ℕ 𝐵 ∈ ℂ) |
122 | 121 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → Σ𝑘 ∈ ℕ 𝐵 ∈ ℂ) |
123 | 122 | abscld 11123 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈
ℝ) |
124 | 122 | absge0d 11126 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → 0 ≤ (abs‘Σ𝑘 ∈ ℕ 𝐵)) |
125 | 20 | adantlr 469 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) |
126 | 21 | adantlr 469 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
127 | 22 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → seq0( + , 𝐺) ∈ dom ⇝ ) |
128 | | mertens.10 |
. . . . . . . . . . . . . 14
⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} |
129 | | nnm1nn0 9155 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ ℕ → (𝑠 − 1) ∈
ℕ0) |
130 | 87, 129 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝜓) → (𝑠 − 1) ∈
ℕ0) |
131 | 130, 5 | eleqtrdi 2259 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝜓) → (𝑠 − 1) ∈
(ℤ≥‘0)) |
132 | | eluzfz1 9966 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 − 1) ∈
(ℤ≥‘0) → 0 ∈ (0...(𝑠 − 1))) |
133 | 131, 132 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝜓) → 0 ∈ (0...(𝑠 − 1))) |
134 | 115 | sumeq2dv 11309 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → Σ𝑘 ∈ ℕ (𝐺‘𝑘) = Σ𝑘 ∈ ℕ 𝐵) |
135 | 134 | adantr 274 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝜓) → Σ𝑘 ∈ ℕ (𝐺‘𝑘) = Σ𝑘 ∈ ℕ 𝐵) |
136 | 135 | fveq2d 5490 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝜓) → (abs‘Σ𝑘 ∈ ℕ (𝐺‘𝑘)) = (abs‘Σ𝑘 ∈ ℕ 𝐵)) |
137 | 136 | eqcomd 2171 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ ℕ (𝐺‘𝑘))) |
138 | | fv0p1e1 8972 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 0 →
(ℤ≥‘(𝑛 + 1)) =
(ℤ≥‘1)) |
139 | 138, 1 | eqtr4di 2217 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 0 →
(ℤ≥‘(𝑛 + 1)) = ℕ) |
140 | 139 | sumeq1d 11307 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 0 → Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘) = Σ𝑘 ∈ ℕ (𝐺‘𝑘)) |
141 | 140 | fveq2d 5490 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 0 →
(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) = (abs‘Σ𝑘 ∈ ℕ (𝐺‘𝑘))) |
142 | 141 | rspceeqv 2848 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ (0...(𝑠 − 1))
∧ (abs‘Σ𝑘
∈ ℕ 𝐵) =
(abs‘Σ𝑘 ∈
ℕ (𝐺‘𝑘))) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
143 | 133, 137,
142 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜓) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
144 | | eqeq1 2172 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (abs‘Σ𝑘 ∈ ℕ 𝐵) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
145 | 144 | rexbidv 2467 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = (abs‘Σ𝑘 ∈ ℕ 𝐵) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
146 | 145, 128 | elab2g 2873 |
. . . . . . . . . . . . . . . 16
⊢
((abs‘Σ𝑘
∈ ℕ 𝐵) ∈
ℝ → ((abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
147 | 123, 146 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝜓) → ((abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
148 | 143, 147 | mpbird 166 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇) |
149 | 125, 126,
127, 128, 148, 87 | mertenslemub 11475 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
150 | 113, 123,
112, 124, 149 | letrd 8022 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → 0 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
151 | 112, 150 | ge0p1rpd 9663 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) + 1) ∈
ℝ+) |
152 | 89, 151 | rpdivcld 9650 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) + 1)) ∈
ℝ+) |
153 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℕ0) |
154 | | fveq2 5486 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑚 → (𝐾‘𝑗) = (𝐾‘𝑚)) |
155 | 154 | eleq1d 2235 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑚 → ((𝐾‘𝑗) ∈ ℝ ↔ (𝐾‘𝑚) ∈ ℝ)) |
156 | 11 | ralrimiva 2539 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑗 ∈ ℕ0 (𝐾‘𝑗) ∈ ℝ) |
157 | 156 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑚 ∈ ℕ0) →
∀𝑗 ∈
ℕ0 (𝐾‘𝑗) ∈ ℝ) |
158 | 155, 157,
153 | rspcdva 2835 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑚 ∈ ℕ0) → (𝐾‘𝑚) ∈ ℝ) |
159 | | fveq2 5486 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → (𝐾‘𝑛) = (𝐾‘𝑚)) |
160 | | eqid 2165 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
↦ (𝐾‘𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐾‘𝑛)) |
161 | 159, 160 | fvmptg 5562 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ0
∧ (𝐾‘𝑚) ∈ ℝ) → ((𝑛 ∈ ℕ0
↦ (𝐾‘𝑛))‘𝑚) = (𝐾‘𝑚)) |
162 | 153, 158,
161 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐾‘𝑛))‘𝑚) = (𝐾‘𝑚)) |
163 | | nn0ex 9120 |
. . . . . . . . . . . . . 14
⊢
ℕ0 ∈ V |
164 | 163 | mptex 5711 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
↦ (𝐾‘𝑛)) ∈ V |
165 | 164 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐾‘𝑛)) ∈ V) |
166 | 60 | biimpri 132 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘0) → 𝑘 ∈ ℕ0) |
167 | | fveq2 5486 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑘 → (𝐾‘𝑗) = (𝐾‘𝑘)) |
168 | 167 | eleq1d 2235 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑘 → ((𝐾‘𝑗) ∈ ℝ ↔ (𝐾‘𝑘) ∈ ℝ)) |
169 | 156 | adantr 274 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
∀𝑗 ∈
ℕ0 (𝐾‘𝑗) ∈ ℝ) |
170 | | simpr 109 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
171 | 168, 169,
170 | rspcdva 2835 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐾‘𝑘) ∈ ℝ) |
172 | 60, 171 | sylan2br 286 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (𝐾‘𝑘) ∈
ℝ) |
173 | | fveq2 5486 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑘 → (𝐾‘𝑛) = (𝐾‘𝑘)) |
174 | 173, 160 | fvmptg 5562 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ0
∧ (𝐾‘𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0
↦ (𝐾‘𝑛))‘𝑘) = (𝐾‘𝑘)) |
175 | 166, 172,
174 | syl2an2 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘0))
→ ((𝑛 ∈
ℕ0 ↦ (𝐾‘𝑛))‘𝑘) = (𝐾‘𝑘)) |
176 | 175, 172 | eqeltrd 2243 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘0))
→ ((𝑛 ∈
ℕ0 ↦ (𝐾‘𝑛))‘𝑘) ∈ ℝ) |
177 | | elnn0uz 9503 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ0
↔ 𝑗 ∈
(ℤ≥‘0)) |
178 | | simpr 109 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈
ℕ0) |
179 | | fveq2 5486 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → (𝐾‘𝑛) = (𝐾‘𝑗)) |
180 | 179, 160 | fvmptg 5562 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ ℕ0
∧ (𝐾‘𝑗) ∈ ℝ) → ((𝑛 ∈ ℕ0
↦ (𝐾‘𝑛))‘𝑗) = (𝐾‘𝑗)) |
181 | 178, 11, 180 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐾‘𝑛))‘𝑗) = (𝐾‘𝑗)) |
182 | 177, 181 | sylan2br 286 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘0))
→ ((𝑛 ∈
ℕ0 ↦ (𝐾‘𝑛))‘𝑗) = (𝐾‘𝑗)) |
183 | | readdcl 7879 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑘 + 𝑦) ∈ ℝ) |
184 | 183 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑘 + 𝑦) ∈ ℝ) |
185 | 6, 176, 182, 184 | seq3feq 10407 |
. . . . . . . . . . . . 13
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ (𝐾‘𝑛))) = seq0( + , 𝐾)) |
186 | 185, 12 | eqeltrd 2243 |
. . . . . . . . . . . 12
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ (𝐾‘𝑛))) ∈ dom ⇝
) |
187 | 181, 11 | eqeltrd 2243 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐾‘𝑛))‘𝑗) ∈ ℝ) |
188 | 187 | recnd 7927 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (𝐾‘𝑛))‘𝑗) ∈ ℂ) |
189 | 5, 6, 165, 186, 188 | serf0 11293 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐾‘𝑛)) ⇝ 0) |
190 | 189 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → (𝑛 ∈ ℕ0 ↦ (𝐾‘𝑛)) ⇝ 0) |
191 | 5, 84, 152, 162, 190 | climi0 11230 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → ∃𝑡 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑡)(abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) + 1))) |
192 | | fveq2 5486 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑎 → (𝐺‘𝑘) = (𝐺‘𝑎)) |
193 | 192 | cbvsumv 11302 |
. . . . . . . . . . . . . . . . 17
⊢
Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘) = Σ𝑎 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑎) |
194 | 193 | fveq2i 5489 |
. . . . . . . . . . . . . . . 16
⊢
(abs‘Σ𝑘
∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) = (abs‘Σ𝑎 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) |
195 | 194 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ (0...(𝑠 − 1)) → (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) = (abs‘Σ𝑎 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑎))) |
196 | 195 | sumeq2i 11305 |
. . . . . . . . . . . . . 14
⊢
Σ𝑛 ∈
(0...(𝑠 −
1))(abs‘Σ𝑘
∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) = Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) |
197 | 196 | oveq1i 5852 |
. . . . . . . . . . . . 13
⊢
(Σ𝑛 ∈
(0...(𝑠 −
1))(abs‘Σ𝑘
∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) + 1) = (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1) |
198 | 197 | oveq2i 5853 |
. . . . . . . . . . . 12
⊢ (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) + 1)) = (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)) |
199 | 198 | breq2i 3990 |
. . . . . . . . . . 11
⊢
((abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) + 1)) ↔ (abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1))) |
200 | 199 | ralbii 2472 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈
(ℤ≥‘𝑡)(abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) + 1)) ↔ ∀𝑚 ∈ (ℤ≥‘𝑡)(abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1))) |
201 | 200 | rexbii 2473 |
. . . . . . . . 9
⊢
(∃𝑡 ∈
ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑡)(abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) + 1)) ↔ ∃𝑡 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑡)(abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1))) |
202 | 191, 201 | sylib 121 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → ∃𝑡 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑡)(abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1))) |
203 | | simplll 523 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈
(ℤ≥‘𝑡)) → 𝜑) |
204 | | eluznn0 9537 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℕ0
∧ 𝑚 ∈
(ℤ≥‘𝑡)) → 𝑚 ∈ ℕ0) |
205 | 204 | adantll 468 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈
(ℤ≥‘𝑡)) → 𝑚 ∈ ℕ0) |
206 | 11, 15 | absidd 11109 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(abs‘(𝐾‘𝑗)) = (𝐾‘𝑗)) |
207 | 206 | ralrimiva 2539 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑗 ∈ ℕ0 (abs‘(𝐾‘𝑗)) = (𝐾‘𝑗)) |
208 | 154 | fveq2d 5490 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑚 → (abs‘(𝐾‘𝑗)) = (abs‘(𝐾‘𝑚))) |
209 | 208, 154 | eqeq12d 2180 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑚 → ((abs‘(𝐾‘𝑗)) = (𝐾‘𝑗) ↔ (abs‘(𝐾‘𝑚)) = (𝐾‘𝑚))) |
210 | 209 | rspccva 2829 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑗 ∈
ℕ0 (abs‘(𝐾‘𝑗)) = (𝐾‘𝑗) ∧ 𝑚 ∈ ℕ0) →
(abs‘(𝐾‘𝑚)) = (𝐾‘𝑚)) |
211 | 207, 210 | sylan 281 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(abs‘(𝐾‘𝑚)) = (𝐾‘𝑚)) |
212 | 203, 205,
211 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈
(ℤ≥‘𝑡)) → (abs‘(𝐾‘𝑚)) = (𝐾‘𝑚)) |
213 | 212 | breq1d 3992 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈
(ℤ≥‘𝑡)) → ((abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)) ↔ (𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) |
214 | 213 | ralbidva 2462 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑡 ∈ ℕ0) →
(∀𝑚 ∈
(ℤ≥‘𝑡)(abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)) ↔ ∀𝑚 ∈ (ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) |
215 | | nfv 1516 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑚(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)) |
216 | | nfcv 2308 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛(𝐾‘𝑚) |
217 | | nfcv 2308 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛
< |
218 | | nfcv 2308 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛((𝐸 / 2) / 𝑠) |
219 | | nfcv 2308 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛
/ |
220 | | nfcv 2308 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛(0...(𝑠 − 1)) |
221 | 220 | nfsum1 11297 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) |
222 | | nfcv 2308 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛
+ |
223 | | nfcv 2308 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛1 |
224 | 221, 222,
223 | nfov 5872 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛(Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1) |
225 | 218, 219,
224 | nfov 5872 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛(((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)) |
226 | 216, 217,
225 | nfbr 4028 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)) |
227 | 159 | breq1d 3992 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → ((𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)) ↔ (𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) |
228 | 215, 226,
227 | cbvral 2688 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)) ↔ ∀𝑚 ∈ (ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1))) |
229 | 214, 228 | bitr4di 197 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑡 ∈ ℕ0) →
(∀𝑚 ∈
(ℤ≥‘𝑡)(abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)) ↔ ∀𝑛 ∈ (ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) |
230 | | simpll 519 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) → 𝜑) |
231 | | mertens.1 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴) |
232 | 230, 231 | sylan 281 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴) |
233 | 230, 8 | sylan 281 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) |
234 | 230, 9 | sylan 281 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈
ℂ) |
235 | 230, 20 | sylan 281 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) |
236 | 230, 21 | sylan 281 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
237 | | mertens.6 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
238 | 230, 237 | sylan 281 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
239 | 12 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) → seq0( + , 𝐾) ∈ dom ⇝ ) |
240 | 22 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) → seq0( + , 𝐺) ∈ dom ⇝ ) |
241 | 3 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) → 𝐸 ∈
ℝ+) |
242 | 196, 112 | eqeltrrid 2254 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) ∈ ℝ) |
243 | 242 | adantr 274 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) → Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) ∈ ℝ) |
244 | 228 | anbi2i 453 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℕ0
∧ ∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1))) ↔ (𝑡 ∈ ℕ0 ∧
∀𝑚 ∈
(ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) |
245 | 244 | anbi2i 453 |
. . . . . . . . . . . . . 14
⊢ ((𝜓 ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) ↔ (𝜓 ∧ (𝑡 ∈ ℕ0 ∧
∀𝑚 ∈
(ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1))))) |
246 | 245 | biimpi 119 |
. . . . . . . . . . . . 13
⊢ ((𝜓 ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧
∀𝑚 ∈
(ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1))))) |
247 | 246 | adantll 468 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧
∀𝑚 ∈
(ℤ≥‘𝑡)(𝐾‘𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1))))) |
248 | 150, 196 | breqtrdi 4023 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → 0 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎))) |
249 | 248 | adantr 274 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) → 0 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎))) |
250 | | simpr 109 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑤 ∈ 𝑇) ∧ 𝑎 ∈ ℕ0) → 𝑎 ∈
ℕ0) |
251 | 20 | ralrimiva 2539 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝐺‘𝑘) = 𝐵) |
252 | 251 | ad3antrrr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑤 ∈ 𝑇) ∧ 𝑎 ∈ ℕ0) →
∀𝑘 ∈
ℕ0 (𝐺‘𝑘) = 𝐵) |
253 | | nfcsb1v 3078 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘⦋𝑎 / 𝑘⦌𝐵 |
254 | 253 | nfeq2 2320 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(𝐺‘𝑎) = ⦋𝑎 / 𝑘⦌𝐵 |
255 | | csbeq1a 3054 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑎 → 𝐵 = ⦋𝑎 / 𝑘⦌𝐵) |
256 | 192, 255 | eqeq12d 2180 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑎 → ((𝐺‘𝑘) = 𝐵 ↔ (𝐺‘𝑎) = ⦋𝑎 / 𝑘⦌𝐵)) |
257 | 254, 256 | rspc 2824 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ ℕ0
→ (∀𝑘 ∈
ℕ0 (𝐺‘𝑘) = 𝐵 → (𝐺‘𝑎) = ⦋𝑎 / 𝑘⦌𝐵)) |
258 | 250, 252,
257 | sylc 62 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑤 ∈ 𝑇) ∧ 𝑎 ∈ ℕ0) → (𝐺‘𝑎) = ⦋𝑎 / 𝑘⦌𝐵) |
259 | 21 | ralrimiva 2539 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐵 ∈ ℂ) |
260 | 259 | ad3antrrr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑤 ∈ 𝑇) ∧ 𝑎 ∈ ℕ0) →
∀𝑘 ∈
ℕ0 𝐵
∈ ℂ) |
261 | 253 | nfel1 2319 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘⦋𝑎 / 𝑘⦌𝐵 ∈ ℂ |
262 | 255 | eleq1d 2235 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑎 → (𝐵 ∈ ℂ ↔ ⦋𝑎 / 𝑘⦌𝐵 ∈ ℂ)) |
263 | 261, 262 | rspc 2824 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ ℕ0
→ (∀𝑘 ∈
ℕ0 𝐵
∈ ℂ → ⦋𝑎 / 𝑘⦌𝐵 ∈ ℂ)) |
264 | 250, 260,
263 | sylc 62 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑤 ∈ 𝑇) ∧ 𝑎 ∈ ℕ0) →
⦋𝑎 / 𝑘⦌𝐵 ∈ ℂ) |
265 | 22 | ad2antrr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑤 ∈ 𝑇) → seq0( + , 𝐺) ∈ dom ⇝ ) |
266 | 194 | eqeq2i 2176 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ 𝑧 = (abs‘Σ𝑎 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑎))) |
267 | 266 | rexbii 2473 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑛 ∈
(0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑎 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑎))) |
268 | 267 | abbii 2282 |
. . . . . . . . . . . . . . . 16
⊢ {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑎 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑎))} |
269 | 128, 268 | eqtri 2186 |
. . . . . . . . . . . . . . 15
⊢ 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑎 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑎))} |
270 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑤 ∈ 𝑇) → 𝑤 ∈ 𝑇) |
271 | 87 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑤 ∈ 𝑇) → 𝑠 ∈ ℕ) |
272 | 258, 264,
265, 269, 270, 271 | mertenslemub 11475 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑤 ∈ 𝑇) → 𝑤 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎))) |
273 | 272 | ralrimiva 2539 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝜓) → ∀𝑤 ∈ 𝑇 𝑤 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎))) |
274 | 273 | adantr 274 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) → ∀𝑤 ∈ 𝑇 𝑤 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎))) |
275 | 232, 233,
234, 235, 236, 238, 239, 240, 241, 128, 83, 243, 247, 249, 274 | mertenslemi1 11476 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑡 ∈ ℕ0 ∧
∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)))) → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |
276 | 275 | expr 373 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑡 ∈ ℕ0) →
(∀𝑛 ∈
(ℤ≥‘𝑡)(𝐾‘𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)) → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
277 | 229, 276 | sylbid 149 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑡 ∈ ℕ0) →
(∀𝑚 ∈
(ℤ≥‘𝑡)(abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)) → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
278 | 277 | rexlimdva 2583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → (∃𝑡 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑡)(abs‘(𝐾‘𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑎)) + 1)) → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
279 | 202, 278 | mpd 13 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝜓) → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |
280 | 279 | ex 114 |
. . . . . 6
⊢ (𝜑 → (𝜓 → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
281 | 83, 280 | syl5bir 152 |
. . . . 5
⊢ (𝜑 → ((𝑠 ∈ ℕ ∧ ∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
282 | 281 | expdimp 257 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → (∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
283 | 82, 282 | sylbid 149 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ ℕ) → (∀𝑚 ∈
(ℤ≥‘𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
284 | 283 | rexlimdva 2583 |
. 2
⊢ (𝜑 → (∃𝑠 ∈ ℕ ∀𝑚 ∈ (ℤ≥‘𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸)) |
285 | 24, 284 | mpd 13 |
1
⊢ (𝜑 → ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝐸) |