ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslem2 GIF version

Theorem mertenslem2 11718
Description: Lemma for mertensabs 11719. (Contributed by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
mertens.1 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
mertens.2 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
mertens.3 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
mertens.4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertens.5 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertens.6 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
mertens.7 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
mertens.8 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
mertens.9 (𝜑𝐸 ∈ ℝ+)
mertens.10 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
mertens.11 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
Assertion
Ref Expression
mertenslem2 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Distinct variable groups:   𝑗,𝑚,𝑛,𝑠,𝑦,𝑧,𝐵   𝑗,𝑘,𝐺,𝑚,𝑛,𝑠,𝑦,𝑧   𝜑,𝑗,𝑘,𝑚,𝑦,𝑧   𝐴,𝑘,𝑚,𝑛,𝑠,𝑦   𝑗,𝐸,𝑘,𝑚,𝑛,𝑠,𝑦,𝑧   𝑗,𝐾,𝑘,𝑚,𝑛,𝑠,𝑦,𝑧   𝑗,𝐹,𝑚,𝑛,𝑦   𝜓,𝑗,𝑘,𝑚,𝑛,𝑦,𝑧   𝑇,𝑗,𝑘,𝑚,𝑛,𝑦,𝑧   𝑘,𝐻,𝑚,𝑦   𝜑,𝑛,𝑠
Allowed substitution hints:   𝜓(𝑠)   𝐴(𝑧,𝑗)   𝐵(𝑘)   𝑇(𝑠)   𝐹(𝑧,𝑘,𝑠)   𝐻(𝑧,𝑗,𝑛,𝑠)

Proof of Theorem mertenslem2
Dummy variables 𝑡 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9654 . . 3 ℕ = (ℤ‘1)
2 1zzd 9370 . . 3 (𝜑 → 1 ∈ ℤ)
3 mertens.9 . . . . 5 (𝜑𝐸 ∈ ℝ+)
43rphalfcld 9801 . . . 4 (𝜑 → (𝐸 / 2) ∈ ℝ+)
5 nn0uz 9653 . . . . . 6 0 = (ℤ‘0)
6 0zd 9355 . . . . . 6 (𝜑 → 0 ∈ ℤ)
7 eqidd 2197 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (𝐾𝑗))
8 mertens.2 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
9 mertens.3 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
109abscld 11363 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
118, 10eqeltrd 2273 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) ∈ ℝ)
12 mertens.7 . . . . . 6 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
135, 6, 7, 11, 12isumrecl 11611 . . . . 5 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
149absge0d 11366 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
1514, 8breqtrrd 4062 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (𝐾𝑗))
165, 6, 7, 11, 12, 15isumge0 11612 . . . . 5 (𝜑 → 0 ≤ Σ𝑗 ∈ ℕ0 (𝐾𝑗))
1713, 16ge0p1rpd 9819 . . . 4 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ+)
184, 17rpdivcld 9806 . . 3 (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ+)
19 eqidd 2197 . . 3 ((𝜑𝑚 ∈ ℕ) → (seq0( + , 𝐺)‘𝑚) = (seq0( + , 𝐺)‘𝑚))
20 mertens.4 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
21 mertens.5 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
22 mertens.8 . . . 4 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
235, 6, 20, 21, 22isumclim2 11604 . . 3 (𝜑 → seq0( + , 𝐺) ⇝ Σ𝑘 ∈ ℕ0 𝐵)
241, 2, 18, 19, 23climi2 11470 . 2 (𝜑 → ∃𝑠 ∈ ℕ ∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
25 eluznn 9691 . . . . . . . 8 ((𝑠 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑠)) → 𝑚 ∈ ℕ)
2620, 21eqeltrd 2273 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
275, 6, 26serf 10592 . . . . . . . . . . . 12 (𝜑 → seq0( + , 𝐺):ℕ0⟶ℂ)
28 nnnn0 9273 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
29 ffvelcdm 5698 . . . . . . . . . . . 12 ((seq0( + , 𝐺):ℕ0⟶ℂ ∧ 𝑚 ∈ ℕ0) → (seq0( + , 𝐺)‘𝑚) ∈ ℂ)
3027, 28, 29syl2an 289 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (seq0( + , 𝐺)‘𝑚) ∈ ℂ)
315, 6, 20, 21, 22isumcl 11607 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
3231adantr 276 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
3330, 32abssubd 11375 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) = (abs‘(Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚))))
34 eqid 2196 . . . . . . . . . . . . . 14 (ℤ‘(𝑚 + 1)) = (ℤ‘(𝑚 + 1))
3528adantl 277 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
36 peano2nn0 9306 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
3735, 36syl 14 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ0)
3837nn0zd 9463 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℤ)
39 simpll 527 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝜑)
40 eluznn0 9690 . . . . . . . . . . . . . . . 16 (((𝑚 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ ℕ0)
4137, 40sylan 283 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ ℕ0)
4239, 41, 20syl2anc 411 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝐺𝑘) = 𝐵)
4339, 41, 21syl2anc 411 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝐵 ∈ ℂ)
4422adantr 276 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → seq0( + , 𝐺) ∈ dom ⇝ )
4526adantlr 477 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
465, 37, 45iserex 11521 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq(𝑚 + 1)( + , 𝐺) ∈ dom ⇝ ))
4744, 46mpbid 147 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → seq(𝑚 + 1)( + , 𝐺) ∈ dom ⇝ )
4834, 38, 42, 43, 47isumcl 11607 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵 ∈ ℂ)
4930, 48pncan2d 8356 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵) − (seq0( + , 𝐺)‘𝑚)) = Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵)
5020adantlr 477 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
5121adantlr 477 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
525, 34, 37, 50, 51, 44isumsplit 11673 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0 𝐵 = (Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵))
53 nncn 9015 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
5453adantl 277 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
55 ax-1cn 7989 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
56 pncan 8249 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑚 + 1) − 1) = 𝑚)
5754, 55, 56sylancl 413 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) − 1) = 𝑚)
5857oveq2d 5941 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ) → (0...((𝑚 + 1) − 1)) = (0...𝑚))
5958sumeq1d 11548 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 = Σ𝑘 ∈ (0...𝑚)𝐵)
60 elnn0uz 9656 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
6160, 50sylan2br 288 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘0)) → (𝐺𝑘) = 𝐵)
6235, 5eleqtrdi 2289 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ (ℤ‘0))
6360, 51sylan2br 288 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘0)) → 𝐵 ∈ ℂ)
6461, 62, 63fsum3ser 11579 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...𝑚)𝐵 = (seq0( + , 𝐺)‘𝑚))
6559, 64eqtrd 2229 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 = (seq0( + , 𝐺)‘𝑚))
6665oveq1d 5940 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵) = ((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵))
6752, 66eqtrd 2229 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0 𝐵 = ((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵))
6867oveq1d 5940 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚)) = (((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵) − (seq0( + , 𝐺)‘𝑚)))
6942sumeq2dv 11550 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵)
7049, 68, 693eqtr4d 2239 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚)) = Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘))
7170fveq2d 5565 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (abs‘(Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚))) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)))
7233, 71eqtrd 2229 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)))
7372breq1d 4044 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7425, 73sylan2 286 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑠))) → ((abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7574anassrs 400 . . . . . 6 (((𝜑𝑠 ∈ ℕ) ∧ 𝑚 ∈ (ℤ𝑠)) → ((abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7675ralbidva 2493 . . . . 5 ((𝜑𝑠 ∈ ℕ) → (∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
77 fvoveq1 5948 . . . . . . . . 9 (𝑚 = 𝑛 → (ℤ‘(𝑚 + 1)) = (ℤ‘(𝑛 + 1)))
7877sumeq1d 11548 . . . . . . . 8 (𝑚 = 𝑛 → Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))
7978fveq2d 5565 . . . . . . 7 (𝑚 = 𝑛 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
8079breq1d 4044 . . . . . 6 (𝑚 = 𝑛 → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
8180cbvralv 2729 . . . . 5 (∀𝑚 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
8276, 81bitrdi 196 . . . 4 ((𝜑𝑠 ∈ ℕ) → (∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
83 mertens.11 . . . . . 6 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
84 0zd 9355 . . . . . . . . . 10 ((𝜑𝜓) → 0 ∈ ℤ)
854adantr 276 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝐸 / 2) ∈ ℝ+)
8683simplbi 274 . . . . . . . . . . . . . 14 (𝜓𝑠 ∈ ℕ)
8786adantl 277 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑠 ∈ ℕ)
8887nnrpd 9786 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑠 ∈ ℝ+)
8985, 88rpdivcld 9806 . . . . . . . . . . 11 ((𝜑𝜓) → ((𝐸 / 2) / 𝑠) ∈ ℝ+)
9087nnzd 9464 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝑠 ∈ ℤ)
91 1zzd 9370 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 1 ∈ ℤ)
9290, 91zsubcld 9470 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝑠 − 1) ∈ ℤ)
9384, 92fzfigd 10540 . . . . . . . . . . . . 13 ((𝜑𝜓) → (0...(𝑠 − 1)) ∈ Fin)
94 eqid 2196 . . . . . . . . . . . . . . 15 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
95 elfznn0 10206 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0...(𝑠 − 1)) → 𝑛 ∈ ℕ0)
9695adantl 277 . . . . . . . . . . . . . . . . 17 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → 𝑛 ∈ ℕ0)
97 peano2nn0 9306 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
9896, 97syl 14 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑛 + 1) ∈ ℕ0)
9998nn0zd 9463 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑛 + 1) ∈ ℤ)
100 eqidd 2197 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) = (𝐺𝑘))
101 simplll 533 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝜑)
102 eluznn0 9690 . . . . . . . . . . . . . . . . 17 (((𝑛 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
10398, 102sylan 283 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
104101, 103, 26syl2anc 411 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) ∈ ℂ)
10522ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → seq0( + , 𝐺) ∈ dom ⇝ )
106 simpll 527 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → 𝜑)
107106, 26sylan 283 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
1085, 98, 107iserex 11521 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ ))
109105, 108mpbid 147 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ )
11094, 99, 100, 104, 109isumcl 11607 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) ∈ ℂ)
111110abscld 11363 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ∈ ℝ)
11293, 111fsumrecl 11583 . . . . . . . . . . . 12 ((𝜑𝜓) → Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ∈ ℝ)
113 0red 8044 . . . . . . . . . . . . 13 ((𝜑𝜓) → 0 ∈ ℝ)
114 nnnn0 9273 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
115114, 20sylan2 286 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = 𝐵)
116114, 21sylan2 286 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
117 1nn0 9282 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
118117a1i 9 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℕ0)
1195, 118, 26iserex 11521 . . . . . . . . . . . . . . . . 17 (𝜑 → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq1( + , 𝐺) ∈ dom ⇝ ))
12022, 119mpbid 147 . . . . . . . . . . . . . . . 16 (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ )
1211, 2, 115, 116, 120isumcl 11607 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ ℕ 𝐵 ∈ ℂ)
122121adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝜓) → Σ𝑘 ∈ ℕ 𝐵 ∈ ℂ)
123122abscld 11363 . . . . . . . . . . . . 13 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ ℝ)
124122absge0d 11366 . . . . . . . . . . . . 13 ((𝜑𝜓) → 0 ≤ (abs‘Σ𝑘 ∈ ℕ 𝐵))
12520adantlr 477 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
12621adantlr 477 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
12722adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝜓) → seq0( + , 𝐺) ∈ dom ⇝ )
128 mertens.10 . . . . . . . . . . . . . 14 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
129 nnm1nn0 9307 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℕ → (𝑠 − 1) ∈ ℕ0)
13087, 129syl 14 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → (𝑠 − 1) ∈ ℕ0)
131130, 5eleqtrdi 2289 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → (𝑠 − 1) ∈ (ℤ‘0))
132 eluzfz1 10123 . . . . . . . . . . . . . . . . 17 ((𝑠 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑠 − 1)))
133131, 132syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 0 ∈ (0...(𝑠 − 1)))
134115sumeq2dv 11550 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ𝑘 ∈ ℕ (𝐺𝑘) = Σ𝑘 ∈ ℕ 𝐵)
135134adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → Σ𝑘 ∈ ℕ (𝐺𝑘) = Σ𝑘 ∈ ℕ 𝐵)
136135fveq2d 5565 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘)) = (abs‘Σ𝑘 ∈ ℕ 𝐵))
137136eqcomd 2202 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘)))
138 fv0p1e1 9122 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 0 → (ℤ‘(𝑛 + 1)) = (ℤ‘1))
139138, 1eqtr4di 2247 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 0 → (ℤ‘(𝑛 + 1)) = ℕ)
140139sumeq1d 11548 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑘 ∈ ℕ (𝐺𝑘))
141140fveq2d 5565 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘)))
142141rspceeqv 2886 . . . . . . . . . . . . . . . 16 ((0 ∈ (0...(𝑠 − 1)) ∧ (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘))) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
143133, 137, 142syl2anc 411 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
144 eqeq1 2203 . . . . . . . . . . . . . . . . . 18 (𝑧 = (abs‘Σ𝑘 ∈ ℕ 𝐵) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
145144rexbidv 2498 . . . . . . . . . . . . . . . . 17 (𝑧 = (abs‘Σ𝑘 ∈ ℕ 𝐵) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
146145, 128elab2g 2911 . . . . . . . . . . . . . . . 16 ((abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ ℝ → ((abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
147123, 146syl 14 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → ((abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
148143, 147mpbird 167 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇)
149125, 126, 127, 128, 148, 87mertenslemub 11716 . . . . . . . . . . . . 13 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
150113, 123, 112, 124, 149letrd 8167 . . . . . . . . . . . 12 ((𝜑𝜓) → 0 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
151112, 150ge0p1rpd 9819 . . . . . . . . . . 11 ((𝜑𝜓) → (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1) ∈ ℝ+)
15289, 151rpdivcld 9806 . . . . . . . . . 10 ((𝜑𝜓) → (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)) ∈ ℝ+)
153 simpr 110 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
154 fveq2 5561 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (𝐾𝑗) = (𝐾𝑚))
155154eleq1d 2265 . . . . . . . . . . . 12 (𝑗 = 𝑚 → ((𝐾𝑗) ∈ ℝ ↔ (𝐾𝑚) ∈ ℝ))
15611ralrimiva 2570 . . . . . . . . . . . . 13 (𝜑 → ∀𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
157156ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑚 ∈ ℕ0) → ∀𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
158155, 157, 153rspcdva 2873 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑚 ∈ ℕ0) → (𝐾𝑚) ∈ ℝ)
159 fveq2 5561 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐾𝑛) = (𝐾𝑚))
160 eqid 2196 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐾𝑛))
161159, 160fvmptg 5640 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (𝐾𝑚) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑚) = (𝐾𝑚))
162153, 158, 161syl2anc 411 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑚) = (𝐾𝑚))
163 nn0ex 9272 . . . . . . . . . . . . . 14 0 ∈ V
164163mptex 5791 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ∈ V
165164a1i 9 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ∈ V)
16660biimpri 133 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℕ0)
167 fveq2 5561 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑘 → (𝐾𝑗) = (𝐾𝑘))
168167eleq1d 2265 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → ((𝐾𝑗) ∈ ℝ ↔ (𝐾𝑘) ∈ ℝ))
169156adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → ∀𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
170 simpr 110 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
171168, 169, 170rspcdva 2873 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → (𝐾𝑘) ∈ ℝ)
17260, 171sylan2br 288 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘0)) → (𝐾𝑘) ∈ ℝ)
173 fveq2 5561 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝐾𝑛) = (𝐾𝑘))
174173, 160fvmptg 5640 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0 ∧ (𝐾𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑘) = (𝐾𝑘))
175166, 172, 174syl2an2 594 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑘) = (𝐾𝑘))
176175, 172eqeltrd 2273 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑘) ∈ ℝ)
177 elnn0uz 9656 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0𝑗 ∈ (ℤ‘0))
178 simpr 110 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
179 fveq2 5561 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝐾𝑛) = (𝐾𝑗))
180179, 160fvmptg 5640 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℕ0 ∧ (𝐾𝑗) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (𝐾𝑗))
181178, 11, 180syl2anc 411 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (𝐾𝑗))
182177, 181sylan2br 288 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (𝐾𝑗))
183 readdcl 8022 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑘 + 𝑦) ∈ ℝ)
184183adantl 277 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑘 + 𝑦) ∈ ℝ)
1856, 176, 182, 184seq3feq 10589 . . . . . . . . . . . . 13 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐾𝑛))) = seq0( + , 𝐾))
186185, 12eqeltrd 2273 . . . . . . . . . . . 12 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐾𝑛))) ∈ dom ⇝ )
187181, 11eqeltrd 2273 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) ∈ ℝ)
188187recnd 8072 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) ∈ ℂ)
1895, 6, 165, 186, 188serf0 11534 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ⇝ 0)
190189adantr 276 . . . . . . . . . 10 ((𝜑𝜓) → (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ⇝ 0)
1915, 84, 152, 162, 190climi0 11471 . . . . . . . . 9 ((𝜑𝜓) → ∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)))
192 fveq2 5561 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑎 → (𝐺𝑘) = (𝐺𝑎))
193192cbvsumv 11543 . . . . . . . . . . . . . . . . 17 Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)
194193fveq2i 5564 . . . . . . . . . . . . . . . 16 (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎))
195194a1i 9 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0...(𝑠 − 1)) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
196195sumeq2i 11546 . . . . . . . . . . . . . 14 Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎))
197196oveq1i 5935 . . . . . . . . . . . . 13 𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1) = (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)
198197oveq2i 5936 . . . . . . . . . . . 12 (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)) = (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))
199198breq2i 4042 . . . . . . . . . . 11 ((abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)) ↔ (abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))
200199ralbii 2503 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))
201200rexbii 2504 . . . . . . . . 9 (∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)) ↔ ∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))
202191, 201sylib 122 . . . . . . . 8 ((𝜑𝜓) → ∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))
203 simplll 533 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → 𝜑)
204 eluznn0 9690 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)) → 𝑚 ∈ ℕ0)
205204adantll 476 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → 𝑚 ∈ ℕ0)
20611, 15absidd 11349 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (abs‘(𝐾𝑗)) = (𝐾𝑗))
207206ralrimiva 2570 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑗 ∈ ℕ0 (abs‘(𝐾𝑗)) = (𝐾𝑗))
208154fveq2d 5565 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (abs‘(𝐾𝑗)) = (abs‘(𝐾𝑚)))
209208, 154eqeq12d 2211 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → ((abs‘(𝐾𝑗)) = (𝐾𝑗) ↔ (abs‘(𝐾𝑚)) = (𝐾𝑚)))
210209rspccva 2867 . . . . . . . . . . . . . . 15 ((∀𝑗 ∈ ℕ0 (abs‘(𝐾𝑗)) = (𝐾𝑗) ∧ 𝑚 ∈ ℕ0) → (abs‘(𝐾𝑚)) = (𝐾𝑚))
211207, 210sylan 283 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → (abs‘(𝐾𝑚)) = (𝐾𝑚))
212203, 205, 211syl2anc 411 . . . . . . . . . . . . 13 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → (abs‘(𝐾𝑚)) = (𝐾𝑚))
213212breq1d 4044 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → ((abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) ↔ (𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))))
214213ralbidva 2493 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))))
215 nfv 1542 . . . . . . . . . . . 12 𝑚(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))
216 nfcv 2339 . . . . . . . . . . . . 13 𝑛(𝐾𝑚)
217 nfcv 2339 . . . . . . . . . . . . 13 𝑛 <
218 nfcv 2339 . . . . . . . . . . . . . 14 𝑛((𝐸 / 2) / 𝑠)
219 nfcv 2339 . . . . . . . . . . . . . 14 𝑛 /
220 nfcv 2339 . . . . . . . . . . . . . . . 16 𝑛(0...(𝑠 − 1))
221220nfsum1 11538 . . . . . . . . . . . . . . 15 𝑛Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎))
222 nfcv 2339 . . . . . . . . . . . . . . 15 𝑛 +
223 nfcv 2339 . . . . . . . . . . . . . . 15 𝑛1
224221, 222, 223nfov 5955 . . . . . . . . . . . . . 14 𝑛𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)
225218, 219, 224nfov 5955 . . . . . . . . . . . . 13 𝑛(((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))
226216, 217, 225nfbr 4080 . . . . . . . . . . . 12 𝑛(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))
227159breq1d 4044 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) ↔ (𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))))
228215, 226, 227cbvral 2725 . . . . . . . . . . 11 (∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))
229214, 228bitr4di 198 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))))
230 simpll 527 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → 𝜑)
231 mertens.1 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
232230, 231sylan 283 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
233230, 8sylan 283 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
234230, 9sylan 283 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
235230, 20sylan 283 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
236230, 21sylan 283 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
237 mertens.6 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
238230, 237sylan 283 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
23912ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → seq0( + , 𝐾) ∈ dom ⇝ )
24022ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → seq0( + , 𝐺) ∈ dom ⇝ )
2413ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → 𝐸 ∈ ℝ+)
242196, 112eqeltrrid 2284 . . . . . . . . . . . . 13 ((𝜑𝜓) → Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) ∈ ℝ)
243242adantr 276 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) ∈ ℝ)
244228anbi2i 457 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))) ↔ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))))
245244anbi2i 457 . . . . . . . . . . . . . 14 ((𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ↔ (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))))
246245biimpi 120 . . . . . . . . . . . . 13 ((𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))))
247246adantll 476 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))))
248150, 196breqtrdi 4075 . . . . . . . . . . . . 13 ((𝜑𝜓) → 0 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
249248adantr 276 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → 0 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
250 simpr 110 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑤𝑇) ∧ 𝑎 ∈ ℕ0) → 𝑎 ∈ ℕ0)
25120ralrimiva 2570 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘 ∈ ℕ0 (𝐺𝑘) = 𝐵)
252251ad3antrrr 492 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑤𝑇) ∧ 𝑎 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (𝐺𝑘) = 𝐵)
253 nfcsb1v 3117 . . . . . . . . . . . . . . . . . 18 𝑘𝑎 / 𝑘𝐵
254253nfeq2 2351 . . . . . . . . . . . . . . . . 17 𝑘(𝐺𝑎) = 𝑎 / 𝑘𝐵
255 csbeq1a 3093 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑎𝐵 = 𝑎 / 𝑘𝐵)
256192, 255eqeq12d 2211 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑎 → ((𝐺𝑘) = 𝐵 ↔ (𝐺𝑎) = 𝑎 / 𝑘𝐵))
257254, 256rspc 2862 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ0 → (∀𝑘 ∈ ℕ0 (𝐺𝑘) = 𝐵 → (𝐺𝑎) = 𝑎 / 𝑘𝐵))
258250, 252, 257sylc 62 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑤𝑇) ∧ 𝑎 ∈ ℕ0) → (𝐺𝑎) = 𝑎 / 𝑘𝐵)
25921ralrimiva 2570 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
260259ad3antrrr 492 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑤𝑇) ∧ 𝑎 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
261253nfel1 2350 . . . . . . . . . . . . . . . . 17 𝑘𝑎 / 𝑘𝐵 ∈ ℂ
262255eleq1d 2265 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑎 → (𝐵 ∈ ℂ ↔ 𝑎 / 𝑘𝐵 ∈ ℂ))
263261, 262rspc 2862 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ0 → (∀𝑘 ∈ ℕ0 𝐵 ∈ ℂ → 𝑎 / 𝑘𝐵 ∈ ℂ))
264250, 260, 263sylc 62 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑤𝑇) ∧ 𝑎 ∈ ℕ0) → 𝑎 / 𝑘𝐵 ∈ ℂ)
26522ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑤𝑇) → seq0( + , 𝐺) ∈ dom ⇝ )
266194eqeq2i 2207 . . . . . . . . . . . . . . . . . 18 (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ 𝑧 = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
267266rexbii 2504 . . . . . . . . . . . . . . . . 17 (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
268267abbii 2312 . . . . . . . . . . . . . . . 16 {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))} = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎))}
269128, 268eqtri 2217 . . . . . . . . . . . . . . 15 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎))}
270 simpr 110 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑤𝑇) → 𝑤𝑇)
27187adantr 276 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑤𝑇) → 𝑠 ∈ ℕ)
272258, 264, 265, 269, 270, 271mertenslemub 11716 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑤𝑇) → 𝑤 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
273272ralrimiva 2570 . . . . . . . . . . . . 13 ((𝜑𝜓) → ∀𝑤𝑇 𝑤 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
274273adantr 276 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → ∀𝑤𝑇 𝑤 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
275232, 233, 234, 235, 236, 238, 239, 240, 241, 128, 83, 243, 247, 249, 274mertenslemi1 11717 . . . . . . . . . . 11 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
276275expr 375 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
277229, 276sylbid 150 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
278277rexlimdva 2614 . . . . . . . 8 ((𝜑𝜓) → (∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
279202, 278mpd 13 . . . . . . 7 ((𝜑𝜓) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
280279ex 115 . . . . . 6 (𝜑 → (𝜓 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
28183, 280biimtrrid 153 . . . . 5 (𝜑 → ((𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
282281expdimp 259 . . . 4 ((𝜑𝑠 ∈ ℕ) → (∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
28382, 282sylbid 150 . . 3 ((𝜑𝑠 ∈ ℕ) → (∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
284283rexlimdva 2614 . 2 (𝜑 → (∃𝑠 ∈ ℕ ∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
28524, 284mpd 13 1 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476  Vcvv 2763  csb 3084   class class class wbr 4034  cmpt 4095  dom cdm 4664  wf 5255  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   < clt 8078  cle 8079  cmin 8214   / cdiv 8716  cn 9007  2c2 9058  0cn0 9266  cuz 9618  +crp 9745  ...cfz 10100  seqcseq 10556  abscabs 11179  cli 11460  Σcsu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-ico 9986  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  mertensabs  11719
  Copyright terms: Public domain W3C validator