ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslem2 GIF version

Theorem mertenslem2 11789
Description: Lemma for mertensabs 11790. (Contributed by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
mertens.1 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
mertens.2 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
mertens.3 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
mertens.4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertens.5 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertens.6 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
mertens.7 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
mertens.8 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
mertens.9 (𝜑𝐸 ∈ ℝ+)
mertens.10 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
mertens.11 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
Assertion
Ref Expression
mertenslem2 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Distinct variable groups:   𝑗,𝑚,𝑛,𝑠,𝑦,𝑧,𝐵   𝑗,𝑘,𝐺,𝑚,𝑛,𝑠,𝑦,𝑧   𝜑,𝑗,𝑘,𝑚,𝑦,𝑧   𝐴,𝑘,𝑚,𝑛,𝑠,𝑦   𝑗,𝐸,𝑘,𝑚,𝑛,𝑠,𝑦,𝑧   𝑗,𝐾,𝑘,𝑚,𝑛,𝑠,𝑦,𝑧   𝑗,𝐹,𝑚,𝑛,𝑦   𝜓,𝑗,𝑘,𝑚,𝑛,𝑦,𝑧   𝑇,𝑗,𝑘,𝑚,𝑛,𝑦,𝑧   𝑘,𝐻,𝑚,𝑦   𝜑,𝑛,𝑠
Allowed substitution hints:   𝜓(𝑠)   𝐴(𝑧,𝑗)   𝐵(𝑘)   𝑇(𝑠)   𝐹(𝑧,𝑘,𝑠)   𝐻(𝑧,𝑗,𝑛,𝑠)

Proof of Theorem mertenslem2
Dummy variables 𝑡 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9683 . . 3 ℕ = (ℤ‘1)
2 1zzd 9398 . . 3 (𝜑 → 1 ∈ ℤ)
3 mertens.9 . . . . 5 (𝜑𝐸 ∈ ℝ+)
43rphalfcld 9830 . . . 4 (𝜑 → (𝐸 / 2) ∈ ℝ+)
5 nn0uz 9682 . . . . . 6 0 = (ℤ‘0)
6 0zd 9383 . . . . . 6 (𝜑 → 0 ∈ ℤ)
7 eqidd 2205 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (𝐾𝑗))
8 mertens.2 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
9 mertens.3 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
109abscld 11434 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (abs‘𝐴) ∈ ℝ)
118, 10eqeltrd 2281 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) ∈ ℝ)
12 mertens.7 . . . . . 6 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
135, 6, 7, 11, 12isumrecl 11682 . . . . 5 (𝜑 → Σ𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
149absge0d 11437 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (abs‘𝐴))
1514, 8breqtrrd 4071 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → 0 ≤ (𝐾𝑗))
165, 6, 7, 11, 12, 15isumge0 11683 . . . . 5 (𝜑 → 0 ≤ Σ𝑗 ∈ ℕ0 (𝐾𝑗))
1713, 16ge0p1rpd 9848 . . . 4 (𝜑 → (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1) ∈ ℝ+)
184, 17rpdivcld 9835 . . 3 (𝜑 → ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ∈ ℝ+)
19 eqidd 2205 . . 3 ((𝜑𝑚 ∈ ℕ) → (seq0( + , 𝐺)‘𝑚) = (seq0( + , 𝐺)‘𝑚))
20 mertens.4 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
21 mertens.5 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
22 mertens.8 . . . 4 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
235, 6, 20, 21, 22isumclim2 11675 . . 3 (𝜑 → seq0( + , 𝐺) ⇝ Σ𝑘 ∈ ℕ0 𝐵)
241, 2, 18, 19, 23climi2 11541 . 2 (𝜑 → ∃𝑠 ∈ ℕ ∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
25 eluznn 9720 . . . . . . . 8 ((𝑠 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑠)) → 𝑚 ∈ ℕ)
2620, 21eqeltrd 2281 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
275, 6, 26serf 10626 . . . . . . . . . . . 12 (𝜑 → seq0( + , 𝐺):ℕ0⟶ℂ)
28 nnnn0 9301 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
29 ffvelcdm 5712 . . . . . . . . . . . 12 ((seq0( + , 𝐺):ℕ0⟶ℂ ∧ 𝑚 ∈ ℕ0) → (seq0( + , 𝐺)‘𝑚) ∈ ℂ)
3027, 28, 29syl2an 289 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (seq0( + , 𝐺)‘𝑚) ∈ ℂ)
315, 6, 20, 21, 22isumcl 11678 . . . . . . . . . . . 12 (𝜑 → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
3231adantr 276 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
3330, 32abssubd 11446 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) = (abs‘(Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚))))
34 eqid 2204 . . . . . . . . . . . . . 14 (ℤ‘(𝑚 + 1)) = (ℤ‘(𝑚 + 1))
3528adantl 277 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ0)
36 peano2nn0 9334 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ0)
3735, 36syl 14 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ0)
3837nn0zd 9492 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℤ)
39 simpll 527 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝜑)
40 eluznn0 9719 . . . . . . . . . . . . . . . 16 (((𝑚 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ ℕ0)
4137, 40sylan 283 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ ℕ0)
4239, 41, 20syl2anc 411 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝐺𝑘) = 𝐵)
4339, 41, 21syl2anc 411 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝐵 ∈ ℂ)
4422adantr 276 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → seq0( + , 𝐺) ∈ dom ⇝ )
4526adantlr 477 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
465, 37, 45iserex 11592 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq(𝑚 + 1)( + , 𝐺) ∈ dom ⇝ ))
4744, 46mpbid 147 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → seq(𝑚 + 1)( + , 𝐺) ∈ dom ⇝ )
4834, 38, 42, 43, 47isumcl 11678 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵 ∈ ℂ)
4930, 48pncan2d 8384 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵) − (seq0( + , 𝐺)‘𝑚)) = Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵)
5020adantlr 477 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
5121adantlr 477 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
525, 34, 37, 50, 51, 44isumsplit 11744 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0 𝐵 = (Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵))
53 nncn 9043 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
5453adantl 277 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
55 ax-1cn 8017 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
56 pncan 8277 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑚 + 1) − 1) = 𝑚)
5754, 55, 56sylancl 413 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) − 1) = 𝑚)
5857oveq2d 5959 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ) → (0...((𝑚 + 1) − 1)) = (0...𝑚))
5958sumeq1d 11619 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 = Σ𝑘 ∈ (0...𝑚)𝐵)
60 elnn0uz 9685 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
6160, 50sylan2br 288 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘0)) → (𝐺𝑘) = 𝐵)
6235, 5eleqtrdi 2297 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ (ℤ‘0))
6360, 51sylan2br 288 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘0)) → 𝐵 ∈ ℂ)
6461, 62, 63fsum3ser 11650 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...𝑚)𝐵 = (seq0( + , 𝐺)‘𝑚))
6559, 64eqtrd 2237 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 = (seq0( + , 𝐺)‘𝑚))
6665oveq1d 5958 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (Σ𝑘 ∈ (0...((𝑚 + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵) = ((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵))
6752, 66eqtrd 2237 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ ℕ0 𝐵 = ((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵))
6867oveq1d 5958 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚)) = (((seq0( + , 𝐺)‘𝑚) + Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵) − (seq0( + , 𝐺)‘𝑚)))
6942sumeq2dv 11621 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑚 + 1))𝐵)
7049, 68, 693eqtr4d 2247 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚)) = Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘))
7170fveq2d 5579 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (abs‘(Σ𝑘 ∈ ℕ0 𝐵 − (seq0( + , 𝐺)‘𝑚))) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)))
7233, 71eqtrd 2237 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)))
7372breq1d 4053 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7425, 73sylan2 286 . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑠))) → ((abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7574anassrs 400 . . . . . 6 (((𝜑𝑠 ∈ ℕ) ∧ 𝑚 ∈ (ℤ𝑠)) → ((abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7675ralbidva 2501 . . . . 5 ((𝜑𝑠 ∈ ℕ) → (∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
77 fvoveq1 5966 . . . . . . . . 9 (𝑚 = 𝑛 → (ℤ‘(𝑚 + 1)) = (ℤ‘(𝑛 + 1)))
7877sumeq1d 11619 . . . . . . . 8 (𝑚 = 𝑛 → Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))
7978fveq2d 5579 . . . . . . 7 (𝑚 = 𝑛 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
8079breq1d 4053 . . . . . 6 (𝑚 = 𝑛 → ((abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
8180cbvralv 2737 . . . . 5 (∀𝑚 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑚 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
8276, 81bitrdi 196 . . . 4 ((𝜑𝑠 ∈ ℕ) → (∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
83 mertens.11 . . . . . 6 (𝜓 ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
84 0zd 9383 . . . . . . . . . 10 ((𝜑𝜓) → 0 ∈ ℤ)
854adantr 276 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝐸 / 2) ∈ ℝ+)
8683simplbi 274 . . . . . . . . . . . . . 14 (𝜓𝑠 ∈ ℕ)
8786adantl 277 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑠 ∈ ℕ)
8887nnrpd 9815 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑠 ∈ ℝ+)
8985, 88rpdivcld 9835 . . . . . . . . . . 11 ((𝜑𝜓) → ((𝐸 / 2) / 𝑠) ∈ ℝ+)
9087nnzd 9493 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝑠 ∈ ℤ)
91 1zzd 9398 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 1 ∈ ℤ)
9290, 91zsubcld 9499 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (𝑠 − 1) ∈ ℤ)
9384, 92fzfigd 10574 . . . . . . . . . . . . 13 ((𝜑𝜓) → (0...(𝑠 − 1)) ∈ Fin)
94 eqid 2204 . . . . . . . . . . . . . . 15 (ℤ‘(𝑛 + 1)) = (ℤ‘(𝑛 + 1))
95 elfznn0 10235 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0...(𝑠 − 1)) → 𝑛 ∈ ℕ0)
9695adantl 277 . . . . . . . . . . . . . . . . 17 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → 𝑛 ∈ ℕ0)
97 peano2nn0 9334 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
9896, 97syl 14 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑛 + 1) ∈ ℕ0)
9998nn0zd 9492 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (𝑛 + 1) ∈ ℤ)
100 eqidd 2205 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) = (𝐺𝑘))
101 simplll 533 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝜑)
102 eluznn0 9719 . . . . . . . . . . . . . . . . 17 (((𝑛 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
10398, 102sylan 283 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → 𝑘 ∈ ℕ0)
104101, 103, 26syl2anc 411 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ (ℤ‘(𝑛 + 1))) → (𝐺𝑘) ∈ ℂ)
10522ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → seq0( + , 𝐺) ∈ dom ⇝ )
106 simpll 527 . . . . . . . . . . . . . . . . . 18 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → 𝜑)
107106, 26sylan 283 . . . . . . . . . . . . . . . . 17 ((((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
1085, 98, 107iserex 11592 . . . . . . . . . . . . . . . 16 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ ))
109105, 108mpbid 147 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → seq(𝑛 + 1)( + , 𝐺) ∈ dom ⇝ )
11094, 99, 100, 104, 109isumcl 11678 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) ∈ ℂ)
111110abscld 11434 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ 𝑛 ∈ (0...(𝑠 − 1))) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ∈ ℝ)
11293, 111fsumrecl 11654 . . . . . . . . . . . 12 ((𝜑𝜓) → Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ∈ ℝ)
113 0red 8072 . . . . . . . . . . . . 13 ((𝜑𝜓) → 0 ∈ ℝ)
114 nnnn0 9301 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
115114, 20sylan2 286 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) = 𝐵)
116114, 21sylan2 286 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 𝐵 ∈ ℂ)
117 1nn0 9310 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
118117a1i 9 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℕ0)
1195, 118, 26iserex 11592 . . . . . . . . . . . . . . . . 17 (𝜑 → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq1( + , 𝐺) ∈ dom ⇝ ))
12022, 119mpbid 147 . . . . . . . . . . . . . . . 16 (𝜑 → seq1( + , 𝐺) ∈ dom ⇝ )
1211, 2, 115, 116, 120isumcl 11678 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ ℕ 𝐵 ∈ ℂ)
122121adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝜓) → Σ𝑘 ∈ ℕ 𝐵 ∈ ℂ)
123122abscld 11434 . . . . . . . . . . . . 13 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ ℝ)
124122absge0d 11437 . . . . . . . . . . . . 13 ((𝜑𝜓) → 0 ≤ (abs‘Σ𝑘 ∈ ℕ 𝐵))
12520adantlr 477 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
12621adantlr 477 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
12722adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝜓) → seq0( + , 𝐺) ∈ dom ⇝ )
128 mertens.10 . . . . . . . . . . . . . 14 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
129 nnm1nn0 9335 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℕ → (𝑠 − 1) ∈ ℕ0)
13087, 129syl 14 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → (𝑠 − 1) ∈ ℕ0)
131130, 5eleqtrdi 2297 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → (𝑠 − 1) ∈ (ℤ‘0))
132 eluzfz1 10152 . . . . . . . . . . . . . . . . 17 ((𝑠 − 1) ∈ (ℤ‘0) → 0 ∈ (0...(𝑠 − 1)))
133131, 132syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 0 ∈ (0...(𝑠 − 1)))
134115sumeq2dv 11621 . . . . . . . . . . . . . . . . . . 19 (𝜑 → Σ𝑘 ∈ ℕ (𝐺𝑘) = Σ𝑘 ∈ ℕ 𝐵)
135134adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝜑𝜓) → Σ𝑘 ∈ ℕ (𝐺𝑘) = Σ𝑘 ∈ ℕ 𝐵)
136135fveq2d 5579 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘)) = (abs‘Σ𝑘 ∈ ℕ 𝐵))
137136eqcomd 2210 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘)))
138 fv0p1e1 9150 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 0 → (ℤ‘(𝑛 + 1)) = (ℤ‘1))
139138, 1eqtr4di 2255 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 0 → (ℤ‘(𝑛 + 1)) = ℕ)
140139sumeq1d 11619 . . . . . . . . . . . . . . . . . 18 (𝑛 = 0 → Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑘 ∈ ℕ (𝐺𝑘))
141140fveq2d 5579 . . . . . . . . . . . . . . . . 17 (𝑛 = 0 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘)))
142141rspceeqv 2894 . . . . . . . . . . . . . . . 16 ((0 ∈ (0...(𝑠 − 1)) ∧ (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ ℕ (𝐺𝑘))) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
143133, 137, 142syl2anc 411 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
144 eqeq1 2211 . . . . . . . . . . . . . . . . . 18 (𝑧 = (abs‘Σ𝑘 ∈ ℕ 𝐵) → (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ (abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
145144rexbidv 2506 . . . . . . . . . . . . . . . . 17 (𝑧 = (abs‘Σ𝑘 ∈ ℕ 𝐵) → (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
146145, 128elab2g 2919 . . . . . . . . . . . . . . . 16 ((abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ ℝ → ((abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
147123, 146syl 14 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → ((abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇 ↔ ∃𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ ℕ 𝐵) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
148143, 147mpbird 167 . . . . . . . . . . . . . 14 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ∈ 𝑇)
149125, 126, 127, 128, 148, 87mertenslemub 11787 . . . . . . . . . . . . 13 ((𝜑𝜓) → (abs‘Σ𝑘 ∈ ℕ 𝐵) ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
150113, 123, 112, 124, 149letrd 8195 . . . . . . . . . . . 12 ((𝜑𝜓) → 0 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
151112, 150ge0p1rpd 9848 . . . . . . . . . . 11 ((𝜑𝜓) → (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1) ∈ ℝ+)
15289, 151rpdivcld 9835 . . . . . . . . . 10 ((𝜑𝜓) → (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)) ∈ ℝ+)
153 simpr 110 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
154 fveq2 5575 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → (𝐾𝑗) = (𝐾𝑚))
155154eleq1d 2273 . . . . . . . . . . . 12 (𝑗 = 𝑚 → ((𝐾𝑗) ∈ ℝ ↔ (𝐾𝑚) ∈ ℝ))
15611ralrimiva 2578 . . . . . . . . . . . . 13 (𝜑 → ∀𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
157156ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑚 ∈ ℕ0) → ∀𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
158155, 157, 153rspcdva 2881 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑚 ∈ ℕ0) → (𝐾𝑚) ∈ ℝ)
159 fveq2 5575 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝐾𝑛) = (𝐾𝑚))
160 eqid 2204 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐾𝑛))
161159, 160fvmptg 5654 . . . . . . . . . . 11 ((𝑚 ∈ ℕ0 ∧ (𝐾𝑚) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑚) = (𝐾𝑚))
162153, 158, 161syl2anc 411 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑚) = (𝐾𝑚))
163 nn0ex 9300 . . . . . . . . . . . . . 14 0 ∈ V
164163mptex 5809 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ∈ V
165164a1i 9 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ∈ V)
16660biimpri 133 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℕ0)
167 fveq2 5575 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑘 → (𝐾𝑗) = (𝐾𝑘))
168167eleq1d 2273 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → ((𝐾𝑗) ∈ ℝ ↔ (𝐾𝑘) ∈ ℝ))
169156adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → ∀𝑗 ∈ ℕ0 (𝐾𝑗) ∈ ℝ)
170 simpr 110 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
171168, 169, 170rspcdva 2881 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → (𝐾𝑘) ∈ ℝ)
17260, 171sylan2br 288 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘0)) → (𝐾𝑘) ∈ ℝ)
173 fveq2 5575 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝐾𝑛) = (𝐾𝑘))
174173, 160fvmptg 5654 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0 ∧ (𝐾𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑘) = (𝐾𝑘))
175166, 172, 174syl2an2 594 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑘) = (𝐾𝑘))
176175, 172eqeltrd 2281 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑘) ∈ ℝ)
177 elnn0uz 9685 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0𝑗 ∈ (ℤ‘0))
178 simpr 110 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
179 fveq2 5575 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝐾𝑛) = (𝐾𝑗))
180179, 160fvmptg 5654 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℕ0 ∧ (𝐾𝑗) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (𝐾𝑗))
181178, 11, 180syl2anc 411 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (𝐾𝑗))
182177, 181sylan2br 288 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) = (𝐾𝑗))
183 readdcl 8050 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑘 + 𝑦) ∈ ℝ)
184183adantl 277 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑘 + 𝑦) ∈ ℝ)
1856, 176, 182, 184seq3feq 10623 . . . . . . . . . . . . 13 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐾𝑛))) = seq0( + , 𝐾))
186185, 12eqeltrd 2281 . . . . . . . . . . . 12 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (𝐾𝑛))) ∈ dom ⇝ )
187181, 11eqeltrd 2281 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) ∈ ℝ)
188187recnd 8100 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (𝐾𝑛))‘𝑗) ∈ ℂ)
1895, 6, 165, 186, 188serf0 11605 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ⇝ 0)
190189adantr 276 . . . . . . . . . 10 ((𝜑𝜓) → (𝑛 ∈ ℕ0 ↦ (𝐾𝑛)) ⇝ 0)
1915, 84, 152, 162, 190climi0 11542 . . . . . . . . 9 ((𝜑𝜓) → ∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)))
192 fveq2 5575 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑎 → (𝐺𝑘) = (𝐺𝑎))
193192cbvsumv 11614 . . . . . . . . . . . . . . . . 17 Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘) = Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)
194193fveq2i 5578 . . . . . . . . . . . . . . . 16 (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎))
195194a1i 9 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0...(𝑠 − 1)) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
196195sumeq2i 11617 . . . . . . . . . . . . . 14 Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) = Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎))
197196oveq1i 5953 . . . . . . . . . . . . 13 𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1) = (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)
198197oveq2i 5954 . . . . . . . . . . . 12 (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)) = (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))
199198breq2i 4051 . . . . . . . . . . 11 ((abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)) ↔ (abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))
200199ralbii 2511 . . . . . . . . . 10 (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))
201200rexbii 2512 . . . . . . . . 9 (∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) + 1)) ↔ ∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))
202191, 201sylib 122 . . . . . . . 8 ((𝜑𝜓) → ∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))
203 simplll 533 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → 𝜑)
204 eluznn0 9719 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)) → 𝑚 ∈ ℕ0)
205204adantll 476 . . . . . . . . . . . . . 14 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → 𝑚 ∈ ℕ0)
20611, 15absidd 11420 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (abs‘(𝐾𝑗)) = (𝐾𝑗))
207206ralrimiva 2578 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑗 ∈ ℕ0 (abs‘(𝐾𝑗)) = (𝐾𝑗))
208154fveq2d 5579 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (abs‘(𝐾𝑗)) = (abs‘(𝐾𝑚)))
209208, 154eqeq12d 2219 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → ((abs‘(𝐾𝑗)) = (𝐾𝑗) ↔ (abs‘(𝐾𝑚)) = (𝐾𝑚)))
210209rspccva 2875 . . . . . . . . . . . . . . 15 ((∀𝑗 ∈ ℕ0 (abs‘(𝐾𝑗)) = (𝐾𝑗) ∧ 𝑚 ∈ ℕ0) → (abs‘(𝐾𝑚)) = (𝐾𝑚))
211207, 210sylan 283 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → (abs‘(𝐾𝑚)) = (𝐾𝑚))
212203, 205, 211syl2anc 411 . . . . . . . . . . . . 13 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → (abs‘(𝐾𝑚)) = (𝐾𝑚))
213212breq1d 4053 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑡)) → ((abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) ↔ (𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))))
214213ralbidva 2501 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))))
215 nfv 1550 . . . . . . . . . . . 12 𝑚(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))
216 nfcv 2347 . . . . . . . . . . . . 13 𝑛(𝐾𝑚)
217 nfcv 2347 . . . . . . . . . . . . 13 𝑛 <
218 nfcv 2347 . . . . . . . . . . . . . 14 𝑛((𝐸 / 2) / 𝑠)
219 nfcv 2347 . . . . . . . . . . . . . 14 𝑛 /
220 nfcv 2347 . . . . . . . . . . . . . . . 16 𝑛(0...(𝑠 − 1))
221220nfsum1 11609 . . . . . . . . . . . . . . 15 𝑛Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎))
222 nfcv 2347 . . . . . . . . . . . . . . 15 𝑛 +
223 nfcv 2347 . . . . . . . . . . . . . . 15 𝑛1
224221, 222, 223nfov 5973 . . . . . . . . . . . . . 14 𝑛𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)
225218, 219, 224nfov 5973 . . . . . . . . . . . . 13 𝑛(((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))
226216, 217, 225nfbr 4089 . . . . . . . . . . . 12 𝑛(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))
227159breq1d 4053 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) ↔ (𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))))
228215, 226, 227cbvral 2733 . . . . . . . . . . 11 (∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) ↔ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))
229214, 228bitr4di 198 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))))
230 simpll 527 . . . . . . . . . . . . 13 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → 𝜑)
231 mertens.1 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
232230, 231sylan 283 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
233230, 8sylan 283 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
234230, 9sylan 283 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
235230, 20sylan 283 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
236230, 21sylan 283 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
237 mertens.6 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
238230, 237sylan 283 . . . . . . . . . . . 12 ((((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ∧ 𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
23912ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → seq0( + , 𝐾) ∈ dom ⇝ )
24022ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → seq0( + , 𝐺) ∈ dom ⇝ )
2413ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → 𝐸 ∈ ℝ+)
242196, 112eqeltrrid 2292 . . . . . . . . . . . . 13 ((𝜑𝜓) → Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) ∈ ℝ)
243242adantr 276 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) ∈ ℝ)
244228anbi2i 457 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))) ↔ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1))))
245244anbi2i 457 . . . . . . . . . . . . . 14 ((𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) ↔ (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))))
246245biimpi 120 . . . . . . . . . . . . 13 ((𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))))
247246adantll 476 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → (𝜓 ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑚 ∈ (ℤ𝑡)(𝐾𝑚) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))))
248150, 196breqtrdi 4084 . . . . . . . . . . . . 13 ((𝜑𝜓) → 0 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
249248adantr 276 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → 0 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
250 simpr 110 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑤𝑇) ∧ 𝑎 ∈ ℕ0) → 𝑎 ∈ ℕ0)
25120ralrimiva 2578 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘 ∈ ℕ0 (𝐺𝑘) = 𝐵)
252251ad3antrrr 492 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑤𝑇) ∧ 𝑎 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 (𝐺𝑘) = 𝐵)
253 nfcsb1v 3125 . . . . . . . . . . . . . . . . . 18 𝑘𝑎 / 𝑘𝐵
254253nfeq2 2359 . . . . . . . . . . . . . . . . 17 𝑘(𝐺𝑎) = 𝑎 / 𝑘𝐵
255 csbeq1a 3101 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑎𝐵 = 𝑎 / 𝑘𝐵)
256192, 255eqeq12d 2219 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑎 → ((𝐺𝑘) = 𝐵 ↔ (𝐺𝑎) = 𝑎 / 𝑘𝐵))
257254, 256rspc 2870 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ0 → (∀𝑘 ∈ ℕ0 (𝐺𝑘) = 𝐵 → (𝐺𝑎) = 𝑎 / 𝑘𝐵))
258250, 252, 257sylc 62 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑤𝑇) ∧ 𝑎 ∈ ℕ0) → (𝐺𝑎) = 𝑎 / 𝑘𝐵)
25921ralrimiva 2578 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
260259ad3antrrr 492 . . . . . . . . . . . . . . . 16 ((((𝜑𝜓) ∧ 𝑤𝑇) ∧ 𝑎 ∈ ℕ0) → ∀𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
261253nfel1 2358 . . . . . . . . . . . . . . . . 17 𝑘𝑎 / 𝑘𝐵 ∈ ℂ
262255eleq1d 2273 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑎 → (𝐵 ∈ ℂ ↔ 𝑎 / 𝑘𝐵 ∈ ℂ))
263261, 262rspc 2870 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℕ0 → (∀𝑘 ∈ ℕ0 𝐵 ∈ ℂ → 𝑎 / 𝑘𝐵 ∈ ℂ))
264250, 260, 263sylc 62 . . . . . . . . . . . . . . 15 ((((𝜑𝜓) ∧ 𝑤𝑇) ∧ 𝑎 ∈ ℕ0) → 𝑎 / 𝑘𝐵 ∈ ℂ)
26522ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑤𝑇) → seq0( + , 𝐺) ∈ dom ⇝ )
266194eqeq2i 2215 . . . . . . . . . . . . . . . . . 18 (𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ 𝑧 = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
267266rexbii 2512 . . . . . . . . . . . . . . . . 17 (∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
268267abbii 2320 . . . . . . . . . . . . . . . 16 {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))} = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎))}
269128, 268eqtri 2225 . . . . . . . . . . . . . . 15 𝑇 = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎))}
270 simpr 110 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑤𝑇) → 𝑤𝑇)
27187adantr 276 . . . . . . . . . . . . . . 15 (((𝜑𝜓) ∧ 𝑤𝑇) → 𝑠 ∈ ℕ)
272258, 264, 265, 269, 270, 271mertenslemub 11787 . . . . . . . . . . . . . 14 (((𝜑𝜓) ∧ 𝑤𝑇) → 𝑤 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
273272ralrimiva 2578 . . . . . . . . . . . . 13 ((𝜑𝜓) → ∀𝑤𝑇 𝑤 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
274273adantr 276 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → ∀𝑤𝑇 𝑤 ≤ Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)))
275232, 233, 234, 235, 236, 238, 239, 240, 241, 128, 83, 243, 247, 249, 274mertenslemi1 11788 . . . . . . . . . . 11 (((𝜑𝜓) ∧ (𝑡 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)))) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
276275expr 375 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑛 ∈ (ℤ𝑡)(𝐾𝑛) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
277229, 276sylbid 150 . . . . . . . . 9 (((𝜑𝜓) ∧ 𝑡 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
278277rexlimdva 2622 . . . . . . . 8 ((𝜑𝜓) → (∃𝑡 ∈ ℕ0𝑚 ∈ (ℤ𝑡)(abs‘(𝐾𝑚)) < (((𝐸 / 2) / 𝑠) / (Σ𝑛 ∈ (0...(𝑠 − 1))(abs‘Σ𝑎 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑎)) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
279202, 278mpd 13 . . . . . . 7 ((𝜑𝜓) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
280279ex 115 . . . . . 6 (𝜑 → (𝜓 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
28183, 280biimtrrid 153 . . . . 5 (𝜑 → ((𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
282281expdimp 259 . . . 4 ((𝜑𝑠 ∈ ℕ) → (∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
28382, 282sylbid 150 . . 3 ((𝜑𝑠 ∈ ℕ) → (∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
284283rexlimdva 2622 . 2 (𝜑 → (∃𝑠 ∈ ℕ ∀𝑚 ∈ (ℤ𝑠)(abs‘((seq0( + , 𝐺)‘𝑚) − Σ𝑘 ∈ ℕ0 𝐵)) < ((𝐸 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸))
28524, 284mpd 13 1 (𝜑 → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝐸)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  {cab 2190  wral 2483  wrex 2484  Vcvv 2771  csb 3092   class class class wbr 4043  cmpt 4104  dom cdm 4674  wf 5266  cfv 5270  (class class class)co 5943  cc 7922  cr 7923  0cc0 7924  1c1 7925   + caddc 7927   · cmul 7929   < clt 8106  cle 8107  cmin 8242   / cdiv 8744  cn 9035  2c2 9086  0cn0 9294  cuz 9647  +crp 9774  ...cfz 10129  seqcseq 10590  abscabs 11250  cli 11531  Σcsu 11606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-sup 7085  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-ico 10015  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-ihash 10919  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-clim 11532  df-sumdc 11607
This theorem is referenced by:  mertensabs  11790
  Copyright terms: Public domain W3C validator