ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expdimp Unicode version

Theorem expdimp 259
Description: A deduction version of exportation, followed by importation. (Contributed by NM, 6-Sep-2008.)
Hypothesis
Ref Expression
exp3a.1  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
Assertion
Ref Expression
expdimp  |-  ( (
ph  /\  ps )  ->  ( ch  ->  th )
)

Proof of Theorem expdimp
StepHypRef Expression
1 exp3a.1 . . 3  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
21expd 258 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
32imp 124 1  |-  ( (
ph  /\  ps )  ->  ( ch  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  rexlimdvv  2611  reu6  2938  fun11iun  5494  poxp  6247  smoel  6315  iinerm  6621  suplub2ti  7014  infglbti  7038  infnlbti  7039  prarloclemlo  7507  peano5uzti  9375  lbzbi  9630  ssfzo12bi  10239  cau3lem  11137  summodc  11405  mertenslem2  11558  prodmodclem2  11599  alzdvds  11874  nno  11925  nn0seqcvgd  12055  lcmdvds  12093  divgcdodd  12157  prmpwdvds  12367  cnptoprest  14035  lmss  14042  txlm  14075
  Copyright terms: Public domain W3C validator