ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplub2ti GIF version

Theorem suplub2ti 7085
Description: Bidirectional form of suplubti 7084. (Contributed by Jim Kingdon, 17-Jan-2022.)
Hypotheses
Ref Expression
supmoti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
supclti.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
suplub2ti.or (𝜑𝑅 Or 𝐴)
suplub2ti.3 (𝜑𝐵𝐴)
Assertion
Ref Expression
suplub2ti ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧𝐵 𝐶𝑅𝑧))
Distinct variable groups:   𝑢,𝐴,𝑣,𝑥   𝑦,𝐴,𝑥,𝑧   𝑥,𝐵,𝑦,𝑧   𝑢,𝑅,𝑣,𝑥   𝑦,𝑅,𝑧   𝜑,𝑢,𝑣,𝑥   𝑧,𝐶
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐵(𝑣,𝑢)   𝐶(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem suplub2ti
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 supmoti.ti . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
2 supclti.2 . . . 4 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
31, 2suplubti 7084 . . 3 (𝜑 → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
43expdimp 259 . 2 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝐶𝑅𝑧))
5 breq2 4047 . . . 4 (𝑧 = 𝑤 → (𝐶𝑅𝑧𝐶𝑅𝑤))
65cbvrexv 2738 . . 3 (∃𝑧𝐵 𝐶𝑅𝑧 ↔ ∃𝑤𝐵 𝐶𝑅𝑤)
7 simplll 533 . . . . . . 7 ((((𝜑𝐶𝐴) ∧ 𝑤𝐵) ∧ 𝐶𝑅𝑤) → 𝜑)
8 simplr 528 . . . . . . 7 ((((𝜑𝐶𝐴) ∧ 𝑤𝐵) ∧ 𝐶𝑅𝑤) → 𝑤𝐵)
91, 2supubti 7083 . . . . . . 7 (𝜑 → (𝑤𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
107, 8, 9sylc 62 . . . . . 6 ((((𝜑𝐶𝐴) ∧ 𝑤𝐵) ∧ 𝐶𝑅𝑤) → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)
11 simpr 110 . . . . . . 7 ((((𝜑𝐶𝐴) ∧ 𝑤𝐵) ∧ 𝐶𝑅𝑤) → 𝐶𝑅𝑤)
12 suplub2ti.or . . . . . . . . 9 (𝜑𝑅 Or 𝐴)
1312ad3antrrr 492 . . . . . . . 8 ((((𝜑𝐶𝐴) ∧ 𝑤𝐵) ∧ 𝐶𝑅𝑤) → 𝑅 Or 𝐴)
14 simpllr 534 . . . . . . . 8 ((((𝜑𝐶𝐴) ∧ 𝑤𝐵) ∧ 𝐶𝑅𝑤) → 𝐶𝐴)
15 suplub2ti.3 . . . . . . . . . 10 (𝜑𝐵𝐴)
1615ad3antrrr 492 . . . . . . . . 9 ((((𝜑𝐶𝐴) ∧ 𝑤𝐵) ∧ 𝐶𝑅𝑤) → 𝐵𝐴)
1716, 8sseldd 3193 . . . . . . . 8 ((((𝜑𝐶𝐴) ∧ 𝑤𝐵) ∧ 𝐶𝑅𝑤) → 𝑤𝐴)
181, 2supclti 7082 . . . . . . . . 9 (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
1918ad3antrrr 492 . . . . . . . 8 ((((𝜑𝐶𝐴) ∧ 𝑤𝐵) ∧ 𝐶𝑅𝑤) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)
20 sowlin 4365 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐶𝐴𝑤𝐴 ∧ sup(𝐵, 𝐴, 𝑅) ∈ 𝐴)) → (𝐶𝑅𝑤 → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ∨ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)))
2113, 14, 17, 19, 20syl13anc 1251 . . . . . . 7 ((((𝜑𝐶𝐴) ∧ 𝑤𝐵) ∧ 𝐶𝑅𝑤) → (𝐶𝑅𝑤 → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ∨ sup(𝐵, 𝐴, 𝑅)𝑅𝑤)))
2211, 21mpd 13 . . . . . 6 ((((𝜑𝐶𝐴) ∧ 𝑤𝐵) ∧ 𝐶𝑅𝑤) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ∨ sup(𝐵, 𝐴, 𝑅)𝑅𝑤))
2310, 22ecased 1361 . . . . 5 ((((𝜑𝐶𝐴) ∧ 𝑤𝐵) ∧ 𝐶𝑅𝑤) → 𝐶𝑅sup(𝐵, 𝐴, 𝑅))
2423ex 115 . . . 4 (((𝜑𝐶𝐴) ∧ 𝑤𝐵) → (𝐶𝑅𝑤𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
2524rexlimdva 2622 . . 3 ((𝜑𝐶𝐴) → (∃𝑤𝐵 𝐶𝑅𝑤𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
266, 25biimtrid 152 . 2 ((𝜑𝐶𝐴) → (∃𝑧𝐵 𝐶𝑅𝑧𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
274, 26impbid 129 1 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) ↔ ∃𝑧𝐵 𝐶𝑅𝑧))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  wcel 2175  wral 2483  wrex 2484  wss 3165   class class class wbr 4043   Or wor 4340  supcsup 7066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iso 4342  df-iota 5229  df-riota 5889  df-sup 7068
This theorem is referenced by:  suprlubex  9007
  Copyright terms: Public domain W3C validator