| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifex | GIF version | ||
| Description: Existence of the conditional operator (inference form). (Contributed by NM, 2-Sep-2004.) |
| Ref | Expression |
|---|---|
| ifex.1 | ⊢ 𝐴 ∈ V |
| ifex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ifex | ⊢ if(𝜑, 𝐴, 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ifex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | ifexg 4553 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 Vcvv 2779 ifcif 3582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-uni 3868 |
| This theorem is referenced by: elply2 15374 pw1map 16272 nnnninfex 16299 |
| Copyright terms: Public domain | W3C validator |