Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnnninfex GIF version

Theorem nnnninfex 15959
Description: If an element of has a value of zero somewhere, then it is the mapping of a natural number. (Contributed by Jim Kingdon, 4-Aug-2022.)
Hypotheses
Ref Expression
nnnninfex.p (𝜑𝑃 ∈ ℕ)
nnnninfex.n (𝜑𝑁 ∈ ω)
nnnninfex.0 (𝜑 → (𝑃𝑁) = ∅)
Assertion
Ref Expression
nnnninfex (𝜑 → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
Distinct variable group:   𝑃,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝑁(𝑖,𝑛)

Proof of Theorem nnnninfex
Dummy variables 𝑤 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnninfex.n . 2 (𝜑𝑁 ∈ ω)
2 nnnninfex.p . . 3 (𝜑𝑃 ∈ ℕ)
3 nnnninfex.0 . . 3 (𝜑 → (𝑃𝑁) = ∅)
42, 3jca 306 . 2 (𝜑 → (𝑃 ∈ ℕ ∧ (𝑃𝑁) = ∅))
5 fveqeq2 5585 . . . . 5 (𝑤 = ∅ → ((𝑃𝑤) = ∅ ↔ (𝑃‘∅) = ∅))
65anbi2d 464 . . . 4 (𝑤 = ∅ → ((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) ↔ (𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅)))
76imbi1d 231 . . 3 (𝑤 = ∅ → (((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
8 fveqeq2 5585 . . . . 5 (𝑤 = 𝑘 → ((𝑃𝑤) = ∅ ↔ (𝑃𝑘) = ∅))
98anbi2d 464 . . . 4 (𝑤 = 𝑘 → ((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) ↔ (𝑃 ∈ ℕ ∧ (𝑃𝑘) = ∅)))
109imbi1d 231 . . 3 (𝑤 = 𝑘 → (((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ ((𝑃 ∈ ℕ ∧ (𝑃𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
11 fveqeq2 5585 . . . . 5 (𝑤 = suc 𝑘 → ((𝑃𝑤) = ∅ ↔ (𝑃‘suc 𝑘) = ∅))
1211anbi2d 464 . . . 4 (𝑤 = suc 𝑘 → ((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) ↔ (𝑃 ∈ ℕ ∧ (𝑃‘suc 𝑘) = ∅)))
1312imbi1d 231 . . 3 (𝑤 = suc 𝑘 → (((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ ((𝑃 ∈ ℕ ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
14 fveqeq2 5585 . . . . 5 (𝑤 = 𝑁 → ((𝑃𝑤) = ∅ ↔ (𝑃𝑁) = ∅))
1514anbi2d 464 . . . 4 (𝑤 = 𝑁 → ((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) ↔ (𝑃 ∈ ℕ ∧ (𝑃𝑁) = ∅)))
1615imbi1d 231 . . 3 (𝑤 = 𝑁 → (((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ ((𝑃 ∈ ℕ ∧ (𝑃𝑁) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
17 peano1 4642 . . . 4 ∅ ∈ ω
18 simpll 527 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → 𝑃 ∈ ℕ)
1917a1i 9 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → ∅ ∈ ω)
20 simpr 110 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
21 0ss 3499 . . . . . . . . 9 ∅ ⊆ 𝑗
2221a1i 9 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → ∅ ⊆ 𝑗)
23 simplr 528 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → (𝑃‘∅) = ∅)
2418, 19, 20, 22, 23nninfninc 7225 . . . . . . 7 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → (𝑃𝑗) = ∅)
25 noel 3464 . . . . . . . . . 10 ¬ 𝑖 ∈ ∅
2625iffalsei 3580 . . . . . . . . 9 if(𝑖 ∈ ∅, 1o, ∅) = ∅
2726mpteq2i 4131 . . . . . . . 8 (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ ∅)
28 eqidd 2206 . . . . . . . 8 (𝑖 = 𝑗 → ∅ = ∅)
2927, 28, 20, 19fvmptd3 5673 . . . . . . 7 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗) = ∅)
3024, 29eqtr4d 2241 . . . . . 6 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗))
3130ralrimiva 2579 . . . . 5 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → ∀𝑗 ∈ ω (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗))
32 nninff 7224 . . . . . . . 8 (𝑃 ∈ ℕ𝑃:ω⟶2o)
3332ffnd 5426 . . . . . . 7 (𝑃 ∈ ℕ𝑃 Fn ω)
3433adantr 276 . . . . . 6 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → 𝑃 Fn ω)
35 1oex 6510 . . . . . . . 8 1o ∈ V
36 0ex 4171 . . . . . . . 8 ∅ ∈ V
3735, 36ifex 4533 . . . . . . 7 if(𝑖 ∈ ∅, 1o, ∅) ∈ V
38 eqid 2205 . . . . . . 7 (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))
3937, 38fnmpti 5404 . . . . . 6 (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) Fn ω
40 eqfnfv 5677 . . . . . 6 ((𝑃 Fn ω ∧ (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) Fn ω) → (𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) ↔ ∀𝑗 ∈ ω (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗)))
4134, 39, 40sylancl 413 . . . . 5 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → (𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) ↔ ∀𝑗 ∈ ω (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗)))
4231, 41mpbird 167 . . . 4 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
43 eleq2 2269 . . . . . . 7 (𝑛 = ∅ → (𝑖𝑛𝑖 ∈ ∅))
4443ifbid 3592 . . . . . 6 (𝑛 = ∅ → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅))
4544mpteq2dv 4135 . . . . 5 (𝑛 = ∅ → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
4645rspceeqv 2895 . . . 4 ((∅ ∈ ω ∧ 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
4717, 42, 46sylancr 414 . . 3 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
48 simpr 110 . . . . . . . 8 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = ∅) → (𝑃𝑘) = ∅)
49 simpllr 534 . . . . . . . 8 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = ∅) → ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
5048, 49mpd 13 . . . . . . 7 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
51 simpl 109 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → 𝑘 ∈ ω)
5251ad3antrrr 492 . . . . . . . . 9 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → 𝑘 ∈ ω)
53 peano2 4643 . . . . . . . . 9 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
5452, 53syl 14 . . . . . . . 8 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → suc 𝑘 ∈ ω)
55 simpllr 534 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → 𝑃 ∈ ℕ)
5653ad3antrrr 492 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → suc 𝑘 ∈ ω)
57 nnord 4660 . . . . . . . . . . . . . . 15 (𝑘 ∈ ω → Ord 𝑘)
58 ordtr 4425 . . . . . . . . . . . . . . 15 (Ord 𝑘 → Tr 𝑘)
5957, 58syl 14 . . . . . . . . . . . . . 14 (𝑘 ∈ ω → Tr 𝑘)
60 unisucg 4461 . . . . . . . . . . . . . 14 (𝑘 ∈ ω → (Tr 𝑘 suc 𝑘 = 𝑘))
6159, 60mpbid 147 . . . . . . . . . . . . 13 (𝑘 ∈ ω → suc 𝑘 = 𝑘)
6261fveq2d 5580 . . . . . . . . . . . 12 (𝑘 ∈ ω → (𝑃 suc 𝑘) = (𝑃𝑘))
6362ad3antrrr 492 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → (𝑃 suc 𝑘) = (𝑃𝑘))
64 simpr 110 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → (𝑃𝑘) = 1o)
6563, 64eqtrd 2238 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → (𝑃 suc 𝑘) = 1o)
66 simplr 528 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → (𝑃‘suc 𝑘) = ∅)
6755, 56, 65, 66nnnninfeq2 7231 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅)))
6867adantllr 481 . . . . . . . 8 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅)))
69 eleq2 2269 . . . . . . . . . . 11 (𝑛 = suc 𝑘 → (𝑖𝑛𝑖 ∈ suc 𝑘))
7069ifbid 3592 . . . . . . . . . 10 (𝑛 = suc 𝑘 → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ suc 𝑘, 1o, ∅))
7170mpteq2dv 4135 . . . . . . . . 9 (𝑛 = suc 𝑘 → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅)))
7271rspceeqv 2895 . . . . . . . 8 ((suc 𝑘 ∈ ω ∧ 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅))) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
7354, 68, 72syl2anc 411 . . . . . . 7 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
7432adantl 277 . . . . . . . . . . 11 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → 𝑃:ω⟶2o)
7574, 51ffvelcdmd 5716 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → (𝑃𝑘) ∈ 2o)
76 df2o3 6516 . . . . . . . . . 10 2o = {∅, 1o}
7775, 76eleqtrdi 2298 . . . . . . . . 9 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → (𝑃𝑘) ∈ {∅, 1o})
78 elpri 3656 . . . . . . . . 9 ((𝑃𝑘) ∈ {∅, 1o} → ((𝑃𝑘) = ∅ ∨ (𝑃𝑘) = 1o))
7977, 78syl 14 . . . . . . . 8 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → ((𝑃𝑘) = ∅ ∨ (𝑃𝑘) = 1o))
8079ad2antrr 488 . . . . . . 7 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) → ((𝑃𝑘) = ∅ ∨ (𝑃𝑘) = 1o))
8150, 73, 80mpjaodan 800 . . . . . 6 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
8281exp41 370 . . . . 5 (𝑘 ∈ ω → (𝑃 ∈ ℕ → (((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → ((𝑃‘suc 𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))))
8382a2d 26 . . . 4 (𝑘 ∈ ω → ((𝑃 ∈ ℕ → ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) → (𝑃 ∈ ℕ → ((𝑃‘suc 𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))))
84 impexp 263 . . . 4 (((𝑃 ∈ ℕ ∧ (𝑃𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ (𝑃 ∈ ℕ → ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
85 impexp 263 . . . 4 (((𝑃 ∈ ℕ ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ (𝑃 ∈ ℕ → ((𝑃‘suc 𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
8683, 84, 853imtr4g 205 . . 3 (𝑘 ∈ ω → (((𝑃 ∈ ℕ ∧ (𝑃𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → ((𝑃 ∈ ℕ ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
877, 10, 13, 16, 47, 86finds 4648 . 2 (𝑁 ∈ ω → ((𝑃 ∈ ℕ ∧ (𝑃𝑁) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
881, 4, 87sylc 62 1 (𝜑 → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2176  wral 2484  wrex 2485  wss 3166  c0 3460  ifcif 3571  {cpr 3634   cuni 3850  cmpt 4105  Tr wtr 4142  Ord word 4409  suc csuc 4412  ωcom 4638   Fn wfn 5266  wf 5267  cfv 5271  1oc1o 6495  2oc2o 6496  xnninf 7221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1o 6502  df-2o 6503  df-map 6737  df-nninf 7222
This theorem is referenced by:  nninfnfiinf  15960
  Copyright terms: Public domain W3C validator