Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnnninfex GIF version

Theorem nnnninfex 16161
Description: If an element of has a value of zero somewhere, then it is the mapping of a natural number. (Contributed by Jim Kingdon, 4-Aug-2022.)
Hypotheses
Ref Expression
nnnninfex.p (𝜑𝑃 ∈ ℕ)
nnnninfex.n (𝜑𝑁 ∈ ω)
nnnninfex.0 (𝜑 → (𝑃𝑁) = ∅)
Assertion
Ref Expression
nnnninfex (𝜑 → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
Distinct variable group:   𝑃,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝑁(𝑖,𝑛)

Proof of Theorem nnnninfex
Dummy variables 𝑤 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnninfex.n . 2 (𝜑𝑁 ∈ ω)
2 nnnninfex.p . . 3 (𝜑𝑃 ∈ ℕ)
3 nnnninfex.0 . . 3 (𝜑 → (𝑃𝑁) = ∅)
42, 3jca 306 . 2 (𝜑 → (𝑃 ∈ ℕ ∧ (𝑃𝑁) = ∅))
5 fveqeq2 5608 . . . . 5 (𝑤 = ∅ → ((𝑃𝑤) = ∅ ↔ (𝑃‘∅) = ∅))
65anbi2d 464 . . . 4 (𝑤 = ∅ → ((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) ↔ (𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅)))
76imbi1d 231 . . 3 (𝑤 = ∅ → (((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
8 fveqeq2 5608 . . . . 5 (𝑤 = 𝑘 → ((𝑃𝑤) = ∅ ↔ (𝑃𝑘) = ∅))
98anbi2d 464 . . . 4 (𝑤 = 𝑘 → ((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) ↔ (𝑃 ∈ ℕ ∧ (𝑃𝑘) = ∅)))
109imbi1d 231 . . 3 (𝑤 = 𝑘 → (((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ ((𝑃 ∈ ℕ ∧ (𝑃𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
11 fveqeq2 5608 . . . . 5 (𝑤 = suc 𝑘 → ((𝑃𝑤) = ∅ ↔ (𝑃‘suc 𝑘) = ∅))
1211anbi2d 464 . . . 4 (𝑤 = suc 𝑘 → ((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) ↔ (𝑃 ∈ ℕ ∧ (𝑃‘suc 𝑘) = ∅)))
1312imbi1d 231 . . 3 (𝑤 = suc 𝑘 → (((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ ((𝑃 ∈ ℕ ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
14 fveqeq2 5608 . . . . 5 (𝑤 = 𝑁 → ((𝑃𝑤) = ∅ ↔ (𝑃𝑁) = ∅))
1514anbi2d 464 . . . 4 (𝑤 = 𝑁 → ((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) ↔ (𝑃 ∈ ℕ ∧ (𝑃𝑁) = ∅)))
1615imbi1d 231 . . 3 (𝑤 = 𝑁 → (((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ ((𝑃 ∈ ℕ ∧ (𝑃𝑁) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
17 peano1 4660 . . . 4 ∅ ∈ ω
18 simpll 527 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → 𝑃 ∈ ℕ)
1917a1i 9 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → ∅ ∈ ω)
20 simpr 110 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
21 0ss 3507 . . . . . . . . 9 ∅ ⊆ 𝑗
2221a1i 9 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → ∅ ⊆ 𝑗)
23 simplr 528 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → (𝑃‘∅) = ∅)
2418, 19, 20, 22, 23nninfninc 7251 . . . . . . 7 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → (𝑃𝑗) = ∅)
25 noel 3472 . . . . . . . . . 10 ¬ 𝑖 ∈ ∅
2625iffalsei 3588 . . . . . . . . 9 if(𝑖 ∈ ∅, 1o, ∅) = ∅
2726mpteq2i 4147 . . . . . . . 8 (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ ∅)
28 eqidd 2208 . . . . . . . 8 (𝑖 = 𝑗 → ∅ = ∅)
2927, 28, 20, 19fvmptd3 5696 . . . . . . 7 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗) = ∅)
3024, 29eqtr4d 2243 . . . . . 6 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗))
3130ralrimiva 2581 . . . . 5 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → ∀𝑗 ∈ ω (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗))
32 nninff 7250 . . . . . . . 8 (𝑃 ∈ ℕ𝑃:ω⟶2o)
3332ffnd 5446 . . . . . . 7 (𝑃 ∈ ℕ𝑃 Fn ω)
3433adantr 276 . . . . . 6 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → 𝑃 Fn ω)
35 1oex 6533 . . . . . . . 8 1o ∈ V
36 0ex 4187 . . . . . . . 8 ∅ ∈ V
3735, 36ifex 4551 . . . . . . 7 if(𝑖 ∈ ∅, 1o, ∅) ∈ V
38 eqid 2207 . . . . . . 7 (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))
3937, 38fnmpti 5424 . . . . . 6 (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) Fn ω
40 eqfnfv 5700 . . . . . 6 ((𝑃 Fn ω ∧ (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) Fn ω) → (𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) ↔ ∀𝑗 ∈ ω (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗)))
4134, 39, 40sylancl 413 . . . . 5 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → (𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) ↔ ∀𝑗 ∈ ω (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗)))
4231, 41mpbird 167 . . . 4 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
43 eleq2 2271 . . . . . . 7 (𝑛 = ∅ → (𝑖𝑛𝑖 ∈ ∅))
4443ifbid 3601 . . . . . 6 (𝑛 = ∅ → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅))
4544mpteq2dv 4151 . . . . 5 (𝑛 = ∅ → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
4645rspceeqv 2902 . . . 4 ((∅ ∈ ω ∧ 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
4717, 42, 46sylancr 414 . . 3 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
48 simpr 110 . . . . . . . 8 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = ∅) → (𝑃𝑘) = ∅)
49 simpllr 534 . . . . . . . 8 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = ∅) → ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
5048, 49mpd 13 . . . . . . 7 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
51 simpl 109 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → 𝑘 ∈ ω)
5251ad3antrrr 492 . . . . . . . . 9 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → 𝑘 ∈ ω)
53 peano2 4661 . . . . . . . . 9 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
5452, 53syl 14 . . . . . . . 8 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → suc 𝑘 ∈ ω)
55 simpllr 534 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → 𝑃 ∈ ℕ)
5653ad3antrrr 492 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → suc 𝑘 ∈ ω)
57 nnord 4678 . . . . . . . . . . . . . . 15 (𝑘 ∈ ω → Ord 𝑘)
58 ordtr 4443 . . . . . . . . . . . . . . 15 (Ord 𝑘 → Tr 𝑘)
5957, 58syl 14 . . . . . . . . . . . . . 14 (𝑘 ∈ ω → Tr 𝑘)
60 unisucg 4479 . . . . . . . . . . . . . 14 (𝑘 ∈ ω → (Tr 𝑘 suc 𝑘 = 𝑘))
6159, 60mpbid 147 . . . . . . . . . . . . 13 (𝑘 ∈ ω → suc 𝑘 = 𝑘)
6261fveq2d 5603 . . . . . . . . . . . 12 (𝑘 ∈ ω → (𝑃 suc 𝑘) = (𝑃𝑘))
6362ad3antrrr 492 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → (𝑃 suc 𝑘) = (𝑃𝑘))
64 simpr 110 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → (𝑃𝑘) = 1o)
6563, 64eqtrd 2240 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → (𝑃 suc 𝑘) = 1o)
66 simplr 528 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → (𝑃‘suc 𝑘) = ∅)
6755, 56, 65, 66nnnninfeq2 7257 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅)))
6867adantllr 481 . . . . . . . 8 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅)))
69 eleq2 2271 . . . . . . . . . . 11 (𝑛 = suc 𝑘 → (𝑖𝑛𝑖 ∈ suc 𝑘))
7069ifbid 3601 . . . . . . . . . 10 (𝑛 = suc 𝑘 → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ suc 𝑘, 1o, ∅))
7170mpteq2dv 4151 . . . . . . . . 9 (𝑛 = suc 𝑘 → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅)))
7271rspceeqv 2902 . . . . . . . 8 ((suc 𝑘 ∈ ω ∧ 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅))) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
7354, 68, 72syl2anc 411 . . . . . . 7 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
7432adantl 277 . . . . . . . . . . 11 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → 𝑃:ω⟶2o)
7574, 51ffvelcdmd 5739 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → (𝑃𝑘) ∈ 2o)
76 df2o3 6539 . . . . . . . . . 10 2o = {∅, 1o}
7775, 76eleqtrdi 2300 . . . . . . . . 9 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → (𝑃𝑘) ∈ {∅, 1o})
78 elpri 3666 . . . . . . . . 9 ((𝑃𝑘) ∈ {∅, 1o} → ((𝑃𝑘) = ∅ ∨ (𝑃𝑘) = 1o))
7977, 78syl 14 . . . . . . . 8 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → ((𝑃𝑘) = ∅ ∨ (𝑃𝑘) = 1o))
8079ad2antrr 488 . . . . . . 7 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) → ((𝑃𝑘) = ∅ ∨ (𝑃𝑘) = 1o))
8150, 73, 80mpjaodan 800 . . . . . 6 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
8281exp41 370 . . . . 5 (𝑘 ∈ ω → (𝑃 ∈ ℕ → (((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → ((𝑃‘suc 𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))))
8382a2d 26 . . . 4 (𝑘 ∈ ω → ((𝑃 ∈ ℕ → ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) → (𝑃 ∈ ℕ → ((𝑃‘suc 𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))))
84 impexp 263 . . . 4 (((𝑃 ∈ ℕ ∧ (𝑃𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ (𝑃 ∈ ℕ → ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
85 impexp 263 . . . 4 (((𝑃 ∈ ℕ ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ (𝑃 ∈ ℕ → ((𝑃‘suc 𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
8683, 84, 853imtr4g 205 . . 3 (𝑘 ∈ ω → (((𝑃 ∈ ℕ ∧ (𝑃𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → ((𝑃 ∈ ℕ ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
877, 10, 13, 16, 47, 86finds 4666 . 2 (𝑁 ∈ ω → ((𝑃 ∈ ℕ ∧ (𝑃𝑁) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
881, 4, 87sylc 62 1 (𝜑 → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2178  wral 2486  wrex 2487  wss 3174  c0 3468  ifcif 3579  {cpr 3644   cuni 3864  cmpt 4121  Tr wtr 4158  Ord word 4427  suc csuc 4430  ωcom 4656   Fn wfn 5285  wf 5286  cfv 5290  1oc1o 6518  2oc2o 6519  xnninf 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1o 6525  df-2o 6526  df-map 6760  df-nninf 7248
This theorem is referenced by:  nninfnfiinf  16162
  Copyright terms: Public domain W3C validator