Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnnninfex GIF version

Theorem nnnninfex 16347
Description: If an element of has a value of zero somewhere, then it is the mapping of a natural number. (Contributed by Jim Kingdon, 4-Aug-2022.)
Hypotheses
Ref Expression
nnnninfex.p (𝜑𝑃 ∈ ℕ)
nnnninfex.n (𝜑𝑁 ∈ ω)
nnnninfex.0 (𝜑 → (𝑃𝑁) = ∅)
Assertion
Ref Expression
nnnninfex (𝜑 → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
Distinct variable group:   𝑃,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝑁(𝑖,𝑛)

Proof of Theorem nnnninfex
Dummy variables 𝑤 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnninfex.n . 2 (𝜑𝑁 ∈ ω)
2 nnnninfex.p . . 3 (𝜑𝑃 ∈ ℕ)
3 nnnninfex.0 . . 3 (𝜑 → (𝑃𝑁) = ∅)
42, 3jca 306 . 2 (𝜑 → (𝑃 ∈ ℕ ∧ (𝑃𝑁) = ∅))
5 fveqeq2 5635 . . . . 5 (𝑤 = ∅ → ((𝑃𝑤) = ∅ ↔ (𝑃‘∅) = ∅))
65anbi2d 464 . . . 4 (𝑤 = ∅ → ((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) ↔ (𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅)))
76imbi1d 231 . . 3 (𝑤 = ∅ → (((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
8 fveqeq2 5635 . . . . 5 (𝑤 = 𝑘 → ((𝑃𝑤) = ∅ ↔ (𝑃𝑘) = ∅))
98anbi2d 464 . . . 4 (𝑤 = 𝑘 → ((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) ↔ (𝑃 ∈ ℕ ∧ (𝑃𝑘) = ∅)))
109imbi1d 231 . . 3 (𝑤 = 𝑘 → (((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ ((𝑃 ∈ ℕ ∧ (𝑃𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
11 fveqeq2 5635 . . . . 5 (𝑤 = suc 𝑘 → ((𝑃𝑤) = ∅ ↔ (𝑃‘suc 𝑘) = ∅))
1211anbi2d 464 . . . 4 (𝑤 = suc 𝑘 → ((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) ↔ (𝑃 ∈ ℕ ∧ (𝑃‘suc 𝑘) = ∅)))
1312imbi1d 231 . . 3 (𝑤 = suc 𝑘 → (((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ ((𝑃 ∈ ℕ ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
14 fveqeq2 5635 . . . . 5 (𝑤 = 𝑁 → ((𝑃𝑤) = ∅ ↔ (𝑃𝑁) = ∅))
1514anbi2d 464 . . . 4 (𝑤 = 𝑁 → ((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) ↔ (𝑃 ∈ ℕ ∧ (𝑃𝑁) = ∅)))
1615imbi1d 231 . . 3 (𝑤 = 𝑁 → (((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ ((𝑃 ∈ ℕ ∧ (𝑃𝑁) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
17 peano1 4685 . . . 4 ∅ ∈ ω
18 simpll 527 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → 𝑃 ∈ ℕ)
1917a1i 9 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → ∅ ∈ ω)
20 simpr 110 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
21 0ss 3530 . . . . . . . . 9 ∅ ⊆ 𝑗
2221a1i 9 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → ∅ ⊆ 𝑗)
23 simplr 528 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → (𝑃‘∅) = ∅)
2418, 19, 20, 22, 23nninfninc 7286 . . . . . . 7 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → (𝑃𝑗) = ∅)
25 noel 3495 . . . . . . . . . 10 ¬ 𝑖 ∈ ∅
2625iffalsei 3611 . . . . . . . . 9 if(𝑖 ∈ ∅, 1o, ∅) = ∅
2726mpteq2i 4170 . . . . . . . 8 (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ ∅)
28 eqidd 2230 . . . . . . . 8 (𝑖 = 𝑗 → ∅ = ∅)
2927, 28, 20, 19fvmptd3 5727 . . . . . . 7 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗) = ∅)
3024, 29eqtr4d 2265 . . . . . 6 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗))
3130ralrimiva 2603 . . . . 5 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → ∀𝑗 ∈ ω (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗))
32 nninff 7285 . . . . . . . 8 (𝑃 ∈ ℕ𝑃:ω⟶2o)
3332ffnd 5473 . . . . . . 7 (𝑃 ∈ ℕ𝑃 Fn ω)
3433adantr 276 . . . . . 6 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → 𝑃 Fn ω)
35 1oex 6568 . . . . . . . 8 1o ∈ V
36 0ex 4210 . . . . . . . 8 ∅ ∈ V
3735, 36ifex 4576 . . . . . . 7 if(𝑖 ∈ ∅, 1o, ∅) ∈ V
38 eqid 2229 . . . . . . 7 (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))
3937, 38fnmpti 5451 . . . . . 6 (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) Fn ω
40 eqfnfv 5731 . . . . . 6 ((𝑃 Fn ω ∧ (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) Fn ω) → (𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) ↔ ∀𝑗 ∈ ω (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗)))
4134, 39, 40sylancl 413 . . . . 5 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → (𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) ↔ ∀𝑗 ∈ ω (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗)))
4231, 41mpbird 167 . . . 4 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
43 eleq2 2293 . . . . . . 7 (𝑛 = ∅ → (𝑖𝑛𝑖 ∈ ∅))
4443ifbid 3624 . . . . . 6 (𝑛 = ∅ → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅))
4544mpteq2dv 4174 . . . . 5 (𝑛 = ∅ → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
4645rspceeqv 2925 . . . 4 ((∅ ∈ ω ∧ 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
4717, 42, 46sylancr 414 . . 3 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
48 simpr 110 . . . . . . . 8 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = ∅) → (𝑃𝑘) = ∅)
49 simpllr 534 . . . . . . . 8 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = ∅) → ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
5048, 49mpd 13 . . . . . . 7 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
51 simpl 109 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → 𝑘 ∈ ω)
5251ad3antrrr 492 . . . . . . . . 9 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → 𝑘 ∈ ω)
53 peano2 4686 . . . . . . . . 9 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
5452, 53syl 14 . . . . . . . 8 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → suc 𝑘 ∈ ω)
55 simpllr 534 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → 𝑃 ∈ ℕ)
5653ad3antrrr 492 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → suc 𝑘 ∈ ω)
57 nnord 4703 . . . . . . . . . . . . . . 15 (𝑘 ∈ ω → Ord 𝑘)
58 ordtr 4468 . . . . . . . . . . . . . . 15 (Ord 𝑘 → Tr 𝑘)
5957, 58syl 14 . . . . . . . . . . . . . 14 (𝑘 ∈ ω → Tr 𝑘)
60 unisucg 4504 . . . . . . . . . . . . . 14 (𝑘 ∈ ω → (Tr 𝑘 suc 𝑘 = 𝑘))
6159, 60mpbid 147 . . . . . . . . . . . . 13 (𝑘 ∈ ω → suc 𝑘 = 𝑘)
6261fveq2d 5630 . . . . . . . . . . . 12 (𝑘 ∈ ω → (𝑃 suc 𝑘) = (𝑃𝑘))
6362ad3antrrr 492 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → (𝑃 suc 𝑘) = (𝑃𝑘))
64 simpr 110 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → (𝑃𝑘) = 1o)
6563, 64eqtrd 2262 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → (𝑃 suc 𝑘) = 1o)
66 simplr 528 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → (𝑃‘suc 𝑘) = ∅)
6755, 56, 65, 66nnnninfeq2 7292 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅)))
6867adantllr 481 . . . . . . . 8 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅)))
69 eleq2 2293 . . . . . . . . . . 11 (𝑛 = suc 𝑘 → (𝑖𝑛𝑖 ∈ suc 𝑘))
7069ifbid 3624 . . . . . . . . . 10 (𝑛 = suc 𝑘 → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ suc 𝑘, 1o, ∅))
7170mpteq2dv 4174 . . . . . . . . 9 (𝑛 = suc 𝑘 → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅)))
7271rspceeqv 2925 . . . . . . . 8 ((suc 𝑘 ∈ ω ∧ 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅))) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
7354, 68, 72syl2anc 411 . . . . . . 7 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
7432adantl 277 . . . . . . . . . . 11 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → 𝑃:ω⟶2o)
7574, 51ffvelcdmd 5770 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → (𝑃𝑘) ∈ 2o)
76 df2o3 6574 . . . . . . . . . 10 2o = {∅, 1o}
7775, 76eleqtrdi 2322 . . . . . . . . 9 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → (𝑃𝑘) ∈ {∅, 1o})
78 elpri 3689 . . . . . . . . 9 ((𝑃𝑘) ∈ {∅, 1o} → ((𝑃𝑘) = ∅ ∨ (𝑃𝑘) = 1o))
7977, 78syl 14 . . . . . . . 8 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → ((𝑃𝑘) = ∅ ∨ (𝑃𝑘) = 1o))
8079ad2antrr 488 . . . . . . 7 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) → ((𝑃𝑘) = ∅ ∨ (𝑃𝑘) = 1o))
8150, 73, 80mpjaodan 803 . . . . . 6 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
8281exp41 370 . . . . 5 (𝑘 ∈ ω → (𝑃 ∈ ℕ → (((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → ((𝑃‘suc 𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))))
8382a2d 26 . . . 4 (𝑘 ∈ ω → ((𝑃 ∈ ℕ → ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) → (𝑃 ∈ ℕ → ((𝑃‘suc 𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))))
84 impexp 263 . . . 4 (((𝑃 ∈ ℕ ∧ (𝑃𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ (𝑃 ∈ ℕ → ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
85 impexp 263 . . . 4 (((𝑃 ∈ ℕ ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ (𝑃 ∈ ℕ → ((𝑃‘suc 𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
8683, 84, 853imtr4g 205 . . 3 (𝑘 ∈ ω → (((𝑃 ∈ ℕ ∧ (𝑃𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → ((𝑃 ∈ ℕ ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
877, 10, 13, 16, 47, 86finds 4691 . 2 (𝑁 ∈ ω → ((𝑃 ∈ ℕ ∧ (𝑃𝑁) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
881, 4, 87sylc 62 1 (𝜑 → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  wral 2508  wrex 2509  wss 3197  c0 3491  ifcif 3602  {cpr 3667   cuni 3887  cmpt 4144  Tr wtr 4181  Ord word 4452  suc csuc 4455  ωcom 4681   Fn wfn 5312  wf 5313  cfv 5317  1oc1o 6553  2oc2o 6554  xnninf 7282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1o 6560  df-2o 6561  df-map 6795  df-nninf 7283
This theorem is referenced by:  nninfnfiinf  16348
  Copyright terms: Public domain W3C validator