Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnnninfex GIF version

Theorem nnnninfex 15755
Description: If an element of has a value of zero somewhere, then it is the mapping of a natural number. (Contributed by Jim Kingdon, 4-Aug-2022.)
Hypotheses
Ref Expression
nnnninfex.p (𝜑𝑃 ∈ ℕ)
nnnninfex.n (𝜑𝑁 ∈ ω)
nnnninfex.0 (𝜑 → (𝑃𝑁) = ∅)
Assertion
Ref Expression
nnnninfex (𝜑 → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
Distinct variable group:   𝑃,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑖,𝑛)   𝑁(𝑖,𝑛)

Proof of Theorem nnnninfex
Dummy variables 𝑤 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnninfex.n . 2 (𝜑𝑁 ∈ ω)
2 nnnninfex.p . . 3 (𝜑𝑃 ∈ ℕ)
3 nnnninfex.0 . . 3 (𝜑 → (𝑃𝑁) = ∅)
42, 3jca 306 . 2 (𝜑 → (𝑃 ∈ ℕ ∧ (𝑃𝑁) = ∅))
5 fveqeq2 5570 . . . . 5 (𝑤 = ∅ → ((𝑃𝑤) = ∅ ↔ (𝑃‘∅) = ∅))
65anbi2d 464 . . . 4 (𝑤 = ∅ → ((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) ↔ (𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅)))
76imbi1d 231 . . 3 (𝑤 = ∅ → (((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
8 fveqeq2 5570 . . . . 5 (𝑤 = 𝑘 → ((𝑃𝑤) = ∅ ↔ (𝑃𝑘) = ∅))
98anbi2d 464 . . . 4 (𝑤 = 𝑘 → ((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) ↔ (𝑃 ∈ ℕ ∧ (𝑃𝑘) = ∅)))
109imbi1d 231 . . 3 (𝑤 = 𝑘 → (((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ ((𝑃 ∈ ℕ ∧ (𝑃𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
11 fveqeq2 5570 . . . . 5 (𝑤 = suc 𝑘 → ((𝑃𝑤) = ∅ ↔ (𝑃‘suc 𝑘) = ∅))
1211anbi2d 464 . . . 4 (𝑤 = suc 𝑘 → ((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) ↔ (𝑃 ∈ ℕ ∧ (𝑃‘suc 𝑘) = ∅)))
1312imbi1d 231 . . 3 (𝑤 = suc 𝑘 → (((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ ((𝑃 ∈ ℕ ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
14 fveqeq2 5570 . . . . 5 (𝑤 = 𝑁 → ((𝑃𝑤) = ∅ ↔ (𝑃𝑁) = ∅))
1514anbi2d 464 . . . 4 (𝑤 = 𝑁 → ((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) ↔ (𝑃 ∈ ℕ ∧ (𝑃𝑁) = ∅)))
1615imbi1d 231 . . 3 (𝑤 = 𝑁 → (((𝑃 ∈ ℕ ∧ (𝑃𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ ((𝑃 ∈ ℕ ∧ (𝑃𝑁) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
17 peano1 4631 . . . 4 ∅ ∈ ω
18 simpll 527 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → 𝑃 ∈ ℕ)
1917a1i 9 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → ∅ ∈ ω)
20 simpr 110 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → 𝑗 ∈ ω)
21 0ss 3490 . . . . . . . . 9 ∅ ⊆ 𝑗
2221a1i 9 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → ∅ ⊆ 𝑗)
23 simplr 528 . . . . . . . 8 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → (𝑃‘∅) = ∅)
2418, 19, 20, 22, 23nninfninc 7198 . . . . . . 7 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → (𝑃𝑗) = ∅)
25 noel 3455 . . . . . . . . . 10 ¬ 𝑖 ∈ ∅
2625iffalsei 3571 . . . . . . . . 9 if(𝑖 ∈ ∅, 1o, ∅) = ∅
2726mpteq2i 4121 . . . . . . . 8 (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ ∅)
28 eqidd 2197 . . . . . . . 8 (𝑖 = 𝑗 → ∅ = ∅)
2927, 28, 20, 19fvmptd3 5658 . . . . . . 7 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗) = ∅)
3024, 29eqtr4d 2232 . . . . . 6 (((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗))
3130ralrimiva 2570 . . . . 5 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → ∀𝑗 ∈ ω (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗))
32 nninff 7197 . . . . . . . 8 (𝑃 ∈ ℕ𝑃:ω⟶2o)
3332ffnd 5411 . . . . . . 7 (𝑃 ∈ ℕ𝑃 Fn ω)
3433adantr 276 . . . . . 6 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → 𝑃 Fn ω)
35 1oex 6491 . . . . . . . 8 1o ∈ V
36 0ex 4161 . . . . . . . 8 ∅ ∈ V
3735, 36ifex 4522 . . . . . . 7 if(𝑖 ∈ ∅, 1o, ∅) ∈ V
38 eqid 2196 . . . . . . 7 (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))
3937, 38fnmpti 5389 . . . . . 6 (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) Fn ω
40 eqfnfv 5662 . . . . . 6 ((𝑃 Fn ω ∧ (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) Fn ω) → (𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) ↔ ∀𝑗 ∈ ω (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗)))
4134, 39, 40sylancl 413 . . . . 5 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → (𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)) ↔ ∀𝑗 ∈ ω (𝑃𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))‘𝑗)))
4231, 41mpbird 167 . . . 4 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
43 eleq2 2260 . . . . . . 7 (𝑛 = ∅ → (𝑖𝑛𝑖 ∈ ∅))
4443ifbid 3583 . . . . . 6 (𝑛 = ∅ → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ ∅, 1o, ∅))
4544mpteq2dv 4125 . . . . 5 (𝑛 = ∅ → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅)))
4645rspceeqv 2886 . . . 4 ((∅ ∈ ω ∧ 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
4717, 42, 46sylancr 414 . . 3 ((𝑃 ∈ ℕ ∧ (𝑃‘∅) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
48 simpr 110 . . . . . . . 8 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = ∅) → (𝑃𝑘) = ∅)
49 simpllr 534 . . . . . . . 8 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = ∅) → ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
5048, 49mpd 13 . . . . . . 7 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
51 simpl 109 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → 𝑘 ∈ ω)
5251ad3antrrr 492 . . . . . . . . 9 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → 𝑘 ∈ ω)
53 peano2 4632 . . . . . . . . 9 (𝑘 ∈ ω → suc 𝑘 ∈ ω)
5452, 53syl 14 . . . . . . . 8 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → suc 𝑘 ∈ ω)
55 simpllr 534 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → 𝑃 ∈ ℕ)
5653ad3antrrr 492 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → suc 𝑘 ∈ ω)
57 nnord 4649 . . . . . . . . . . . . . . 15 (𝑘 ∈ ω → Ord 𝑘)
58 ordtr 4414 . . . . . . . . . . . . . . 15 (Ord 𝑘 → Tr 𝑘)
5957, 58syl 14 . . . . . . . . . . . . . 14 (𝑘 ∈ ω → Tr 𝑘)
60 unisucg 4450 . . . . . . . . . . . . . 14 (𝑘 ∈ ω → (Tr 𝑘 suc 𝑘 = 𝑘))
6159, 60mpbid 147 . . . . . . . . . . . . 13 (𝑘 ∈ ω → suc 𝑘 = 𝑘)
6261fveq2d 5565 . . . . . . . . . . . 12 (𝑘 ∈ ω → (𝑃 suc 𝑘) = (𝑃𝑘))
6362ad3antrrr 492 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → (𝑃 suc 𝑘) = (𝑃𝑘))
64 simpr 110 . . . . . . . . . . 11 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → (𝑃𝑘) = 1o)
6563, 64eqtrd 2229 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → (𝑃 suc 𝑘) = 1o)
66 simplr 528 . . . . . . . . . 10 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → (𝑃‘suc 𝑘) = ∅)
6755, 56, 65, 66nnnninfeq2 7204 . . . . . . . . 9 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅)))
6867adantllr 481 . . . . . . . 8 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅)))
69 eleq2 2260 . . . . . . . . . . 11 (𝑛 = suc 𝑘 → (𝑖𝑛𝑖 ∈ suc 𝑘))
7069ifbid 3583 . . . . . . . . . 10 (𝑛 = suc 𝑘 → if(𝑖𝑛, 1o, ∅) = if(𝑖 ∈ suc 𝑘, 1o, ∅))
7170mpteq2dv 4125 . . . . . . . . 9 (𝑛 = suc 𝑘 → (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅)))
7271rspceeqv 2886 . . . . . . . 8 ((suc 𝑘 ∈ ω ∧ 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅))) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
7354, 68, 72syl2anc 411 . . . . . . 7 (((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃𝑘) = 1o) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
7432adantl 277 . . . . . . . . . . 11 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → 𝑃:ω⟶2o)
7574, 51ffvelcdmd 5701 . . . . . . . . . 10 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → (𝑃𝑘) ∈ 2o)
76 df2o3 6497 . . . . . . . . . 10 2o = {∅, 1o}
7775, 76eleqtrdi 2289 . . . . . . . . 9 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → (𝑃𝑘) ∈ {∅, 1o})
78 elpri 3646 . . . . . . . . 9 ((𝑃𝑘) ∈ {∅, 1o} → ((𝑃𝑘) = ∅ ∨ (𝑃𝑘) = 1o))
7977, 78syl 14 . . . . . . . 8 ((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) → ((𝑃𝑘) = ∅ ∨ (𝑃𝑘) = 1o))
8079ad2antrr 488 . . . . . . 7 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) → ((𝑃𝑘) = ∅ ∨ (𝑃𝑘) = 1o))
8150, 73, 80mpjaodan 799 . . . . . 6 ((((𝑘 ∈ ω ∧ 𝑃 ∈ ℕ) ∧ ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
8281exp41 370 . . . . 5 (𝑘 ∈ ω → (𝑃 ∈ ℕ → (((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → ((𝑃‘suc 𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))))
8382a2d 26 . . . 4 (𝑘 ∈ ω → ((𝑃 ∈ ℕ → ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))) → (𝑃 ∈ ℕ → ((𝑃‘suc 𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))))
84 impexp 263 . . . 4 (((𝑃 ∈ ℕ ∧ (𝑃𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ (𝑃 ∈ ℕ → ((𝑃𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
85 impexp 263 . . . 4 (((𝑃 ∈ ℕ ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) ↔ (𝑃 ∈ ℕ → ((𝑃‘suc 𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
8683, 84, 853imtr4g 205 . . 3 (𝑘 ∈ ω → (((𝑃 ∈ ℕ ∧ (𝑃𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))) → ((𝑃 ∈ ℕ ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))))
877, 10, 13, 16, 47, 86finds 4637 . 2 (𝑁 ∈ ω → ((𝑃 ∈ ℕ ∧ (𝑃𝑁) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅))))
881, 4, 87sylc 62 1 (𝜑 → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖𝑛, 1o, ∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wral 2475  wrex 2476  wss 3157  c0 3451  ifcif 3562  {cpr 3624   cuni 3840  cmpt 4095  Tr wtr 4132  Ord word 4398  suc csuc 4401  ωcom 4627   Fn wfn 5254  wf 5255  cfv 5259  1oc1o 6476  2oc2o 6477  xnninf 7194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1o 6483  df-2o 6484  df-map 6718  df-nninf 7195
This theorem is referenced by:  nninfnfiinf  15756
  Copyright terms: Public domain W3C validator