| Step | Hyp | Ref
| Expression |
| 1 | | nnnninfex.n |
. 2
⊢ (𝜑 → 𝑁 ∈ ω) |
| 2 | | nnnninfex.p |
. . 3
⊢ (𝜑 → 𝑃 ∈
ℕ∞) |
| 3 | | nnnninfex.0 |
. . 3
⊢ (𝜑 → (𝑃‘𝑁) = ∅) |
| 4 | 2, 3 | jca 306 |
. 2
⊢ (𝜑 → (𝑃 ∈ ℕ∞ ∧
(𝑃‘𝑁) = ∅)) |
| 5 | | fveqeq2 5570 |
. . . . 5
⊢ (𝑤 = ∅ → ((𝑃‘𝑤) = ∅ ↔ (𝑃‘∅) = ∅)) |
| 6 | 5 | anbi2d 464 |
. . . 4
⊢ (𝑤 = ∅ → ((𝑃 ∈
ℕ∞ ∧ (𝑃‘𝑤) = ∅) ↔ (𝑃 ∈ ℕ∞ ∧
(𝑃‘∅) =
∅))) |
| 7 | 6 | imbi1d 231 |
. . 3
⊢ (𝑤 = ∅ → (((𝑃 ∈
ℕ∞ ∧ (𝑃‘𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ↔ ((𝑃 ∈
ℕ∞ ∧ (𝑃‘∅) = ∅) →
∃𝑛 ∈ ω
𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o,
∅))))) |
| 8 | | fveqeq2 5570 |
. . . . 5
⊢ (𝑤 = 𝑘 → ((𝑃‘𝑤) = ∅ ↔ (𝑃‘𝑘) = ∅)) |
| 9 | 8 | anbi2d 464 |
. . . 4
⊢ (𝑤 = 𝑘 → ((𝑃 ∈ ℕ∞ ∧
(𝑃‘𝑤) = ∅) ↔ (𝑃 ∈ ℕ∞ ∧
(𝑃‘𝑘) = ∅))) |
| 10 | 9 | imbi1d 231 |
. . 3
⊢ (𝑤 = 𝑘 → (((𝑃 ∈ ℕ∞ ∧
(𝑃‘𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ↔ ((𝑃 ∈
ℕ∞ ∧ (𝑃‘𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o,
∅))))) |
| 11 | | fveqeq2 5570 |
. . . . 5
⊢ (𝑤 = suc 𝑘 → ((𝑃‘𝑤) = ∅ ↔ (𝑃‘suc 𝑘) = ∅)) |
| 12 | 11 | anbi2d 464 |
. . . 4
⊢ (𝑤 = suc 𝑘 → ((𝑃 ∈ ℕ∞ ∧
(𝑃‘𝑤) = ∅) ↔ (𝑃 ∈ ℕ∞ ∧
(𝑃‘suc 𝑘) = ∅))) |
| 13 | 12 | imbi1d 231 |
. . 3
⊢ (𝑤 = suc 𝑘 → (((𝑃 ∈ ℕ∞ ∧
(𝑃‘𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ↔ ((𝑃 ∈
ℕ∞ ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o,
∅))))) |
| 14 | | fveqeq2 5570 |
. . . . 5
⊢ (𝑤 = 𝑁 → ((𝑃‘𝑤) = ∅ ↔ (𝑃‘𝑁) = ∅)) |
| 15 | 14 | anbi2d 464 |
. . . 4
⊢ (𝑤 = 𝑁 → ((𝑃 ∈ ℕ∞ ∧
(𝑃‘𝑤) = ∅) ↔ (𝑃 ∈ ℕ∞ ∧
(𝑃‘𝑁) = ∅))) |
| 16 | 15 | imbi1d 231 |
. . 3
⊢ (𝑤 = 𝑁 → (((𝑃 ∈ ℕ∞ ∧
(𝑃‘𝑤) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ↔ ((𝑃 ∈
ℕ∞ ∧ (𝑃‘𝑁) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o,
∅))))) |
| 17 | | peano1 4631 |
. . . 4
⊢ ∅
∈ ω |
| 18 | | simpll 527 |
. . . . . . . 8
⊢ (((𝑃 ∈
ℕ∞ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → 𝑃 ∈
ℕ∞) |
| 19 | 17 | a1i 9 |
. . . . . . . 8
⊢ (((𝑃 ∈
ℕ∞ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → ∅
∈ ω) |
| 20 | | simpr 110 |
. . . . . . . 8
⊢ (((𝑃 ∈
ℕ∞ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → 𝑗 ∈
ω) |
| 21 | | 0ss 3490 |
. . . . . . . . 9
⊢ ∅
⊆ 𝑗 |
| 22 | 21 | a1i 9 |
. . . . . . . 8
⊢ (((𝑃 ∈
ℕ∞ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → ∅
⊆ 𝑗) |
| 23 | | simplr 528 |
. . . . . . . 8
⊢ (((𝑃 ∈
ℕ∞ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → (𝑃‘∅) =
∅) |
| 24 | 18, 19, 20, 22, 23 | nninfninc 7198 |
. . . . . . 7
⊢ (((𝑃 ∈
ℕ∞ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → (𝑃‘𝑗) = ∅) |
| 25 | | noel 3455 |
. . . . . . . . . 10
⊢ ¬
𝑖 ∈
∅ |
| 26 | 25 | iffalsei 3571 |
. . . . . . . . 9
⊢ if(𝑖 ∈ ∅, 1o,
∅) = ∅ |
| 27 | 26 | mpteq2i 4121 |
. . . . . . . 8
⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅)) = (𝑖 ∈
ω ↦ ∅) |
| 28 | | eqidd 2197 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → ∅ = ∅) |
| 29 | 27, 28, 20, 19 | fvmptd3 5658 |
. . . . . . 7
⊢ (((𝑃 ∈
ℕ∞ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅))‘𝑗) =
∅) |
| 30 | 24, 29 | eqtr4d 2232 |
. . . . . 6
⊢ (((𝑃 ∈
ℕ∞ ∧ (𝑃‘∅) = ∅) ∧ 𝑗 ∈ ω) → (𝑃‘𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅))‘𝑗)) |
| 31 | 30 | ralrimiva 2570 |
. . . . 5
⊢ ((𝑃 ∈
ℕ∞ ∧ (𝑃‘∅) = ∅) →
∀𝑗 ∈ ω
(𝑃‘𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅))‘𝑗)) |
| 32 | | nninff 7197 |
. . . . . . . 8
⊢ (𝑃 ∈
ℕ∞ → 𝑃:ω⟶2o) |
| 33 | 32 | ffnd 5411 |
. . . . . . 7
⊢ (𝑃 ∈
ℕ∞ → 𝑃 Fn ω) |
| 34 | 33 | adantr 276 |
. . . . . 6
⊢ ((𝑃 ∈
ℕ∞ ∧ (𝑃‘∅) = ∅) → 𝑃 Fn ω) |
| 35 | | 1oex 6491 |
. . . . . . . 8
⊢
1o ∈ V |
| 36 | | 0ex 4161 |
. . . . . . . 8
⊢ ∅
∈ V |
| 37 | 35, 36 | ifex 4522 |
. . . . . . 7
⊢ if(𝑖 ∈ ∅, 1o,
∅) ∈ V |
| 38 | | eqid 2196 |
. . . . . . 7
⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅)) = (𝑖 ∈
ω ↦ if(𝑖 ∈
∅, 1o, ∅)) |
| 39 | 37, 38 | fnmpti 5389 |
. . . . . 6
⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅)) Fn ω |
| 40 | | eqfnfv 5662 |
. . . . . 6
⊢ ((𝑃 Fn ω ∧ (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅)) Fn ω) → (𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))
↔ ∀𝑗 ∈
ω (𝑃‘𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅))‘𝑗))) |
| 41 | 34, 39, 40 | sylancl 413 |
. . . . 5
⊢ ((𝑃 ∈
ℕ∞ ∧ (𝑃‘∅) = ∅) → (𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o, ∅))
↔ ∀𝑗 ∈
ω (𝑃‘𝑗) = ((𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅))‘𝑗))) |
| 42 | 31, 41 | mpbird 167 |
. . . 4
⊢ ((𝑃 ∈
ℕ∞ ∧ (𝑃‘∅) = ∅) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅))) |
| 43 | | eleq2 2260 |
. . . . . . 7
⊢ (𝑛 = ∅ → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ ∅)) |
| 44 | 43 | ifbid 3583 |
. . . . . 6
⊢ (𝑛 = ∅ → if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ ∅, 1o,
∅)) |
| 45 | 44 | mpteq2dv 4125 |
. . . . 5
⊢ (𝑛 = ∅ → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ ∅, 1o,
∅))) |
| 46 | 45 | rspceeqv 2886 |
. . . 4
⊢ ((∅
∈ ω ∧ 𝑃 =
(𝑖 ∈ ω ↦
if(𝑖 ∈ ∅,
1o, ∅))) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| 47 | 17, 42, 46 | sylancr 414 |
. . 3
⊢ ((𝑃 ∈
ℕ∞ ∧ (𝑃‘∅) = ∅) →
∃𝑛 ∈ ω
𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| 48 | | simpr 110 |
. . . . . . . 8
⊢
(((((𝑘 ∈
ω ∧ 𝑃 ∈
ℕ∞) ∧ ((𝑃‘𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃‘𝑘) = ∅) → (𝑃‘𝑘) = ∅) |
| 49 | | simpllr 534 |
. . . . . . . 8
⊢
(((((𝑘 ∈
ω ∧ 𝑃 ∈
ℕ∞) ∧ ((𝑃‘𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃‘𝑘) = ∅) → ((𝑃‘𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) |
| 50 | 48, 49 | mpd 13 |
. . . . . . 7
⊢
(((((𝑘 ∈
ω ∧ 𝑃 ∈
ℕ∞) ∧ ((𝑃‘𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃‘𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| 51 | | simpl 109 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ω ∧ 𝑃 ∈
ℕ∞) → 𝑘 ∈ ω) |
| 52 | 51 | ad3antrrr 492 |
. . . . . . . . 9
⊢
(((((𝑘 ∈
ω ∧ 𝑃 ∈
ℕ∞) ∧ ((𝑃‘𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃‘𝑘) = 1o) → 𝑘 ∈ ω) |
| 53 | | peano2 4632 |
. . . . . . . . 9
⊢ (𝑘 ∈ ω → suc 𝑘 ∈
ω) |
| 54 | 52, 53 | syl 14 |
. . . . . . . 8
⊢
(((((𝑘 ∈
ω ∧ 𝑃 ∈
ℕ∞) ∧ ((𝑃‘𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃‘𝑘) = 1o) → suc 𝑘 ∈
ω) |
| 55 | | simpllr 534 |
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ω ∧ 𝑃 ∈
ℕ∞) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃‘𝑘) = 1o) → 𝑃 ∈
ℕ∞) |
| 56 | 53 | ad3antrrr 492 |
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ω ∧ 𝑃 ∈
ℕ∞) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃‘𝑘) = 1o) → suc 𝑘 ∈
ω) |
| 57 | | nnord 4649 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ω → Ord 𝑘) |
| 58 | | ordtr 4414 |
. . . . . . . . . . . . . . 15
⊢ (Ord
𝑘 → Tr 𝑘) |
| 59 | 57, 58 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ω → Tr 𝑘) |
| 60 | | unisucg 4450 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ω → (Tr 𝑘 ↔ ∪ suc 𝑘 = 𝑘)) |
| 61 | 59, 60 | mpbid 147 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ω → ∪ suc 𝑘 = 𝑘) |
| 62 | 61 | fveq2d 5565 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ω → (𝑃‘∪ suc 𝑘) = (𝑃‘𝑘)) |
| 63 | 62 | ad3antrrr 492 |
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ω ∧ 𝑃 ∈
ℕ∞) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃‘𝑘) = 1o) → (𝑃‘∪ suc
𝑘) = (𝑃‘𝑘)) |
| 64 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((((𝑘 ∈ ω ∧ 𝑃 ∈
ℕ∞) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃‘𝑘) = 1o) → (𝑃‘𝑘) = 1o) |
| 65 | 63, 64 | eqtrd 2229 |
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ω ∧ 𝑃 ∈
ℕ∞) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃‘𝑘) = 1o) → (𝑃‘∪ suc
𝑘) =
1o) |
| 66 | | simplr 528 |
. . . . . . . . . 10
⊢ ((((𝑘 ∈ ω ∧ 𝑃 ∈
ℕ∞) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃‘𝑘) = 1o) → (𝑃‘suc 𝑘) = ∅) |
| 67 | 55, 56, 65, 66 | nnnninfeq2 7204 |
. . . . . . . . 9
⊢ ((((𝑘 ∈ ω ∧ 𝑃 ∈
ℕ∞) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃‘𝑘) = 1o) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅))) |
| 68 | 67 | adantllr 481 |
. . . . . . . 8
⊢
(((((𝑘 ∈
ω ∧ 𝑃 ∈
ℕ∞) ∧ ((𝑃‘𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃‘𝑘) = 1o) → 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅))) |
| 69 | | eleq2 2260 |
. . . . . . . . . . 11
⊢ (𝑛 = suc 𝑘 → (𝑖 ∈ 𝑛 ↔ 𝑖 ∈ suc 𝑘)) |
| 70 | 69 | ifbid 3583 |
. . . . . . . . . 10
⊢ (𝑛 = suc 𝑘 → if(𝑖 ∈ 𝑛, 1o, ∅) = if(𝑖 ∈ suc 𝑘, 1o, ∅)) |
| 71 | 70 | mpteq2dv 4125 |
. . . . . . . . 9
⊢ (𝑛 = suc 𝑘 → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅))) |
| 72 | 71 | rspceeqv 2886 |
. . . . . . . 8
⊢ ((suc
𝑘 ∈ ω ∧
𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ suc 𝑘, 1o, ∅))) →
∃𝑛 ∈ ω
𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| 73 | 54, 68, 72 | syl2anc 411 |
. . . . . . 7
⊢
(((((𝑘 ∈
ω ∧ 𝑃 ∈
ℕ∞) ∧ ((𝑃‘𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) ∧ (𝑃‘𝑘) = 1o) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| 74 | 32 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ω ∧ 𝑃 ∈
ℕ∞) → 𝑃:ω⟶2o) |
| 75 | 74, 51 | ffvelcdmd 5701 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ω ∧ 𝑃 ∈
ℕ∞) → (𝑃‘𝑘) ∈ 2o) |
| 76 | | df2o3 6497 |
. . . . . . . . . 10
⊢
2o = {∅, 1o} |
| 77 | 75, 76 | eleqtrdi 2289 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ω ∧ 𝑃 ∈
ℕ∞) → (𝑃‘𝑘) ∈ {∅,
1o}) |
| 78 | | elpri 3646 |
. . . . . . . . 9
⊢ ((𝑃‘𝑘) ∈ {∅, 1o} →
((𝑃‘𝑘) = ∅ ∨ (𝑃‘𝑘) = 1o)) |
| 79 | 77, 78 | syl 14 |
. . . . . . . 8
⊢ ((𝑘 ∈ ω ∧ 𝑃 ∈
ℕ∞) → ((𝑃‘𝑘) = ∅ ∨ (𝑃‘𝑘) = 1o)) |
| 80 | 79 | ad2antrr 488 |
. . . . . . 7
⊢ ((((𝑘 ∈ ω ∧ 𝑃 ∈
ℕ∞) ∧ ((𝑃‘𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) → ((𝑃‘𝑘) = ∅ ∨ (𝑃‘𝑘) = 1o)) |
| 81 | 50, 73, 80 | mpjaodan 799 |
. . . . . 6
⊢ ((((𝑘 ∈ ω ∧ 𝑃 ∈
ℕ∞) ∧ ((𝑃‘𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |
| 82 | 81 | exp41 370 |
. . . . 5
⊢ (𝑘 ∈ ω → (𝑃 ∈
ℕ∞ → (((𝑃‘𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) → ((𝑃‘suc 𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o,
∅)))))) |
| 83 | 82 | a2d 26 |
. . . 4
⊢ (𝑘 ∈ ω → ((𝑃 ∈
ℕ∞ → ((𝑃‘𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) → (𝑃 ∈
ℕ∞ → ((𝑃‘suc 𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o,
∅)))))) |
| 84 | | impexp 263 |
. . . 4
⊢ (((𝑃 ∈
ℕ∞ ∧ (𝑃‘𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ↔ (𝑃 ∈
ℕ∞ → ((𝑃‘𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o,
∅))))) |
| 85 | | impexp 263 |
. . . 4
⊢ (((𝑃 ∈
ℕ∞ ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) ↔ (𝑃 ∈
ℕ∞ → ((𝑃‘suc 𝑘) = ∅ → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o,
∅))))) |
| 86 | 83, 84, 85 | 3imtr4g 205 |
. . 3
⊢ (𝑘 ∈ ω → (((𝑃 ∈
ℕ∞ ∧ (𝑃‘𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) → ((𝑃 ∈
ℕ∞ ∧ (𝑃‘suc 𝑘) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o,
∅))))) |
| 87 | 7, 10, 13, 16, 47, 86 | finds 4637 |
. 2
⊢ (𝑁 ∈ ω → ((𝑃 ∈
ℕ∞ ∧ (𝑃‘𝑁) = ∅) → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅)))) |
| 88 | 1, 4, 87 | sylc 62 |
1
⊢ (𝜑 → ∃𝑛 ∈ ω 𝑃 = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑛, 1o, ∅))) |