| Step | Hyp | Ref
| Expression |
| 1 | | elply 15054 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))))) |
| 2 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) → 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) |
| 3 | | simpll 527 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) → 𝑆 ⊆ ℂ) |
| 4 | | cnex 8020 |
. . . . . . . . . . . . . . . 16
⊢ ℂ
∈ V |
| 5 | | ssexg 4173 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ⊆ ℂ ∧ ℂ
∈ V) → 𝑆 ∈
V) |
| 6 | 3, 4, 5 | sylancl 413 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) → 𝑆 ∈ V) |
| 7 | | c0ex 8037 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
V |
| 8 | 7 | snex 4219 |
. . . . . . . . . . . . . . 15
⊢ {0}
∈ V |
| 9 | | unexg 4479 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ V ∧ {0} ∈ V)
→ (𝑆 ∪ {0}) ∈
V) |
| 10 | 6, 8, 9 | sylancl 413 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) → (𝑆 ∪ {0}) ∈ V) |
| 11 | | nn0ex 9272 |
. . . . . . . . . . . . . 14
⊢
ℕ0 ∈ V |
| 12 | | elmapg 6729 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝑓:ℕ0⟶(𝑆 ∪ {0}))) |
| 13 | 10, 11, 12 | sylancl 413 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) → (𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ 𝑓:ℕ0⟶(𝑆 ∪ {0}))) |
| 14 | 2, 13 | mpbid 147 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) → 𝑓:ℕ0⟶(𝑆 ∪ {0})) |
| 15 | 14 | ffvelcdmda 5700 |
. . . . . . . . . . 11
⊢ ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) ∧ 𝑥 ∈ ℕ0) → (𝑓‘𝑥) ∈ (𝑆 ∪ {0})) |
| 16 | | ssun2 3328 |
. . . . . . . . . . . . 13
⊢ {0}
⊆ (𝑆 ∪
{0}) |
| 17 | 7 | snss 3758 |
. . . . . . . . . . . . 13
⊢ (0 ∈
(𝑆 ∪ {0}) ↔ {0}
⊆ (𝑆 ∪
{0})) |
| 18 | 16, 17 | mpbir 146 |
. . . . . . . . . . . 12
⊢ 0 ∈
(𝑆 ∪
{0}) |
| 19 | 18 | a1i 9 |
. . . . . . . . . . 11
⊢ ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) ∧ 𝑥 ∈ ℕ0) → 0 ∈
(𝑆 ∪
{0})) |
| 20 | | nn0z 9363 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℕ0
→ 𝑥 ∈
ℤ) |
| 21 | 20 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈
ℤ) |
| 22 | | 0zd 9355 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) ∧ 𝑥 ∈ ℕ0) → 0 ∈
ℤ) |
| 23 | | simpllr 534 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) ∧ 𝑥 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
| 24 | 23 | nn0zd 9463 |
. . . . . . . . . . . 12
⊢ ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) ∧ 𝑥 ∈ ℕ0) → 𝑛 ∈
ℤ) |
| 25 | | fzdcel 10132 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑛 ∈
ℤ) → DECID 𝑥 ∈ (0...𝑛)) |
| 26 | 21, 22, 24, 25 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) ∧ 𝑥 ∈ ℕ0) →
DECID 𝑥
∈ (0...𝑛)) |
| 27 | 15, 19, 26 | ifcldcd 3598 |
. . . . . . . . . 10
⊢ ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) ∧ 𝑥 ∈ ℕ0) → if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0) ∈ (𝑆 ∪ {0})) |
| 28 | 27 | fmpttd 5720 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)):ℕ0⟶(𝑆 ∪ {0})) |
| 29 | | elmapg 6729 |
. . . . . . . . . 10
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)):ℕ0⟶(𝑆 ∪ {0}))) |
| 30 | 10, 11, 29 | sylancl 413 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ↔ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)):ℕ0⟶(𝑆 ∪ {0}))) |
| 31 | 28, 30 | mpbird 167 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)) |
| 32 | | mptima 5022 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = ran (𝑥 ∈ (ℕ0 ∩
(ℤ≥‘(𝑛 + 1))) ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) |
| 33 | | fznuz 10194 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (0...𝑛) → ¬ 𝑥 ∈ (ℤ≥‘(𝑛 + 1))) |
| 34 | | elinel2 3351 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (ℕ0
∩ (ℤ≥‘(𝑛 + 1))) → 𝑥 ∈ (ℤ≥‘(𝑛 + 1))) |
| 35 | 33, 34 | nsyl3 627 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (ℕ0
∩ (ℤ≥‘(𝑛 + 1))) → ¬ 𝑥 ∈ (0...𝑛)) |
| 36 | 35 | iffalsed 3572 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (ℕ0
∩ (ℤ≥‘(𝑛 + 1))) → if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0) = 0) |
| 37 | 36 | mpteq2ia 4120 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (ℕ0
∩ (ℤ≥‘(𝑛 + 1))) ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) = (𝑥 ∈ (ℕ0 ∩
(ℤ≥‘(𝑛 + 1))) ↦ 0) |
| 38 | | fconstmpt 4711 |
. . . . . . . . . . . . 13
⊢
((ℕ0 ∩ (ℤ≥‘(𝑛 + 1))) × {0}) = (𝑥 ∈ (ℕ0
∩ (ℤ≥‘(𝑛 + 1))) ↦ 0) |
| 39 | 37, 38 | eqtr4i 2220 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (ℕ0
∩ (ℤ≥‘(𝑛 + 1))) ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) = ((ℕ0 ∩
(ℤ≥‘(𝑛 + 1))) × {0}) |
| 40 | 39 | rneqi 4895 |
. . . . . . . . . . 11
⊢ ran
(𝑥 ∈
(ℕ0 ∩ (ℤ≥‘(𝑛 + 1))) ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) = ran ((ℕ0 ∩
(ℤ≥‘(𝑛 + 1))) × {0}) |
| 41 | | peano2nn0 9306 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ0) |
| 42 | | nn0z 9363 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
| 43 | 42 | peano2zd 9468 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℤ) |
| 44 | 43 | uzidd 9633 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
(ℤ≥‘(𝑛 + 1))) |
| 45 | 41, 44 | elind 3349 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
(ℕ0 ∩ (ℤ≥‘(𝑛 + 1)))) |
| 46 | | elex2 2779 |
. . . . . . . . . . . 12
⊢ ((𝑛 + 1) ∈
(ℕ0 ∩ (ℤ≥‘(𝑛 + 1))) → ∃𝑤 𝑤 ∈ (ℕ0 ∩
(ℤ≥‘(𝑛 + 1)))) |
| 47 | | rnxpm 5100 |
. . . . . . . . . . . 12
⊢
(∃𝑤 𝑤 ∈ (ℕ0
∩ (ℤ≥‘(𝑛 + 1))) → ran ((ℕ0
∩ (ℤ≥‘(𝑛 + 1))) × {0}) = {0}) |
| 48 | 45, 46, 47 | 3syl 17 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ ran ((ℕ0 ∩ (ℤ≥‘(𝑛 + 1))) × {0}) =
{0}) |
| 49 | 40, 48 | eqtrid 2241 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ ran (𝑥 ∈
(ℕ0 ∩ (ℤ≥‘(𝑛 + 1))) ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) = {0}) |
| 50 | 32, 49 | eqtrid 2241 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ ((𝑥 ∈
ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0}) |
| 51 | 50 | ad2antlr 489 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0}) |
| 52 | | eqidd 2197 |
. . . . . . . 8
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘)))) |
| 53 | | imaeq1 5005 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → (𝑎 “ (ℤ≥‘(𝑛 + 1))) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1)))) |
| 54 | 53 | eqeq1d 2205 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ↔ ((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0})) |
| 55 | | fveq1 5560 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → (𝑎‘𝑘) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘)) |
| 56 | | elfznn0 10206 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
| 57 | | eleq1w 2257 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑘 → (𝑥 ∈ (0...𝑛) ↔ 𝑘 ∈ (0...𝑛))) |
| 58 | | fveq2 5561 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑘 → (𝑓‘𝑥) = (𝑓‘𝑘)) |
| 59 | 57, 58 | ifbieq1d 3584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑘 → if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0) = if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0)) |
| 60 | | eqid 2196 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) |
| 61 | | vex 2766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑓 ∈ V |
| 62 | | vex 2766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑘 ∈ V |
| 63 | 61, 62 | fvex 5581 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓‘𝑘) ∈ V |
| 64 | 63, 7 | ifex 4522 |
. . . . . . . . . . . . . . . . . 18
⊢ if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0) ∈ V |
| 65 | 59, 60, 64 | fvmpt 5641 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ0
→ ((𝑥 ∈
ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0)) |
| 66 | 56, 65 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0)) |
| 67 | | iftrue 3567 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝑛) → if(𝑘 ∈ (0...𝑛), (𝑓‘𝑘), 0) = (𝑓‘𝑘)) |
| 68 | 66, 67 | eqtrd 2229 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0))‘𝑘) = (𝑓‘𝑘)) |
| 69 | 55, 68 | sylan9eq 2249 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) = (𝑓‘𝑘)) |
| 70 | 69 | oveq1d 5940 |
. . . . . . . . . . . . 13
⊢ ((𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎‘𝑘) · (𝑧↑𝑘)) = ((𝑓‘𝑘) · (𝑧↑𝑘))) |
| 71 | 70 | sumeq2dv 11550 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) |
| 72 | 71 | mpteq2dv 4125 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘)))) |
| 73 | 72 | eqeq2d 2208 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))))) |
| 74 | 54, 73 | anbi12d 473 |
. . . . . . . . 9
⊢ (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘)))))) |
| 75 | 74 | rspcev 2868 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℕ0
↦ if(𝑥 ∈
(0...𝑛), (𝑓‘𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) ∧ (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓‘𝑥), 0)) “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 76 | 31, 51, 52, 75 | syl12anc 1247 |
. . . . . . 7
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 77 | | eqeq1 2203 |
. . . . . . . . 9
⊢ (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 78 | 77 | anbi2d 464 |
. . . . . . . 8
⊢ (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 79 | 78 | rexbidv 2498 |
. . . . . . 7
⊢ (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 80 | 76, 79 | syl5ibrcom 157 |
. . . . . 6
⊢ (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
∧ 𝑓 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 81 | 80 | rexlimdva 2614 |
. . . . 5
⊢ ((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0)
→ (∃𝑓 ∈
((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 82 | 81 | reximdva 2599 |
. . . 4
⊢ (𝑆 ⊆ ℂ →
(∃𝑛 ∈
ℕ0 ∃𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘))) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 83 | 82 | imdistani 445 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧
∃𝑛 ∈
ℕ0 ∃𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑓‘𝑘) · (𝑧↑𝑘)))) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 84 | 1, 83 | sylbi 121 |
. 2
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
| 85 | | simpr 110 |
. . . . . 6
⊢ (((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 86 | 85 | reximi 2594 |
. . . . 5
⊢
(∃𝑎 ∈
((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 87 | 86 | reximi 2594 |
. . . 4
⊢
(∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)𝐹 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 88 | 87 | anim2i 342 |
. . 3
⊢ ((𝑆 ⊆ ℂ ∧
∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 89 | | elply 15054 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 90 | 88, 89 | sylibr 134 |
. 2
⊢ ((𝑆 ⊆ ℂ ∧
∃𝑛 ∈
ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) → 𝐹 ∈ (Poly‘𝑆)) |
| 91 | 84, 90 | impbii 126 |
1
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |