ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elply2 GIF version

Theorem elply2 15251
Description: The coefficient function can be assumed to have zeroes outside 0...𝑛. (Contributed by Mario Carneiro, 20-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
elply2 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
Distinct variable groups:   𝑆,𝑎,𝑛   𝑘,𝑎,𝑧,𝑛   𝐹,𝑎,𝑛
Allowed substitution hints:   𝑆(𝑧,𝑘)   𝐹(𝑧,𝑘)

Proof of Theorem elply2
Dummy variables 𝑓 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 15250 . . 3 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘)))))
2 simpr 110 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0))
3 simpll 527 . . . . . . . . . . . . . . . 16 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → 𝑆 ⊆ ℂ)
4 cnex 8056 . . . . . . . . . . . . . . . 16 ℂ ∈ V
5 ssexg 4187 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
63, 4, 5sylancl 413 . . . . . . . . . . . . . . 15 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → 𝑆 ∈ V)
7 c0ex 8073 . . . . . . . . . . . . . . . 16 0 ∈ V
87snex 4233 . . . . . . . . . . . . . . 15 {0} ∈ V
9 unexg 4494 . . . . . . . . . . . . . . 15 ((𝑆 ∈ V ∧ {0} ∈ V) → (𝑆 ∪ {0}) ∈ V)
106, 8, 9sylancl 413 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → (𝑆 ∪ {0}) ∈ V)
11 nn0ex 9308 . . . . . . . . . . . . . 14 0 ∈ V
12 elmapg 6755 . . . . . . . . . . . . . 14 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑓:ℕ0⟶(𝑆 ∪ {0})))
1310, 11, 12sylancl 413 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → (𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ 𝑓:ℕ0⟶(𝑆 ∪ {0})))
142, 13mpbid 147 . . . . . . . . . . . 12 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → 𝑓:ℕ0⟶(𝑆 ∪ {0}))
1514ffvelcdmda 5722 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ 𝑥 ∈ ℕ0) → (𝑓𝑥) ∈ (𝑆 ∪ {0}))
16 ssun2 3338 . . . . . . . . . . . . 13 {0} ⊆ (𝑆 ∪ {0})
177snss 3770 . . . . . . . . . . . . 13 (0 ∈ (𝑆 ∪ {0}) ↔ {0} ⊆ (𝑆 ∪ {0}))
1816, 17mpbir 146 . . . . . . . . . . . 12 0 ∈ (𝑆 ∪ {0})
1918a1i 9 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ 𝑥 ∈ ℕ0) → 0 ∈ (𝑆 ∪ {0}))
20 nn0z 9399 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
2120adantl 277 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℤ)
22 0zd 9391 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ 𝑥 ∈ ℕ0) → 0 ∈ ℤ)
23 simpllr 534 . . . . . . . . . . . . 13 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ 𝑥 ∈ ℕ0) → 𝑛 ∈ ℕ0)
2423nn0zd 9500 . . . . . . . . . . . 12 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ 𝑥 ∈ ℕ0) → 𝑛 ∈ ℤ)
25 fzdcel 10169 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑛 ∈ ℤ) → DECID 𝑥 ∈ (0...𝑛))
2621, 22, 24, 25syl3anc 1250 . . . . . . . . . . 11 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ 𝑥 ∈ ℕ0) → DECID 𝑥 ∈ (0...𝑛))
2715, 19, 26ifcldcd 3609 . . . . . . . . . 10 ((((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) ∧ 𝑥 ∈ ℕ0) → if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0) ∈ (𝑆 ∪ {0}))
2827fmpttd 5742 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶(𝑆 ∪ {0}))
29 elmapg 6755 . . . . . . . . . 10 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶(𝑆 ∪ {0})))
3010, 11, 29sylancl 413 . . . . . . . . 9 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑𝑚0) ↔ (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)):ℕ0⟶(𝑆 ∪ {0})))
3128, 30mpbird 167 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑𝑚0))
32 mptima 5039 . . . . . . . . . 10 ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = ran (𝑥 ∈ (ℕ0 ∩ (ℤ‘(𝑛 + 1))) ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))
33 fznuz 10231 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0...𝑛) → ¬ 𝑥 ∈ (ℤ‘(𝑛 + 1)))
34 elinel2 3361 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℕ0 ∩ (ℤ‘(𝑛 + 1))) → 𝑥 ∈ (ℤ‘(𝑛 + 1)))
3533, 34nsyl3 627 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℕ0 ∩ (ℤ‘(𝑛 + 1))) → ¬ 𝑥 ∈ (0...𝑛))
3635iffalsed 3582 . . . . . . . . . . . . . 14 (𝑥 ∈ (ℕ0 ∩ (ℤ‘(𝑛 + 1))) → if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0) = 0)
3736mpteq2ia 4134 . . . . . . . . . . . . 13 (𝑥 ∈ (ℕ0 ∩ (ℤ‘(𝑛 + 1))) ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) = (𝑥 ∈ (ℕ0 ∩ (ℤ‘(𝑛 + 1))) ↦ 0)
38 fconstmpt 4726 . . . . . . . . . . . . 13 ((ℕ0 ∩ (ℤ‘(𝑛 + 1))) × {0}) = (𝑥 ∈ (ℕ0 ∩ (ℤ‘(𝑛 + 1))) ↦ 0)
3937, 38eqtr4i 2230 . . . . . . . . . . . 12 (𝑥 ∈ (ℕ0 ∩ (ℤ‘(𝑛 + 1))) ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) = ((ℕ0 ∩ (ℤ‘(𝑛 + 1))) × {0})
4039rneqi 4911 . . . . . . . . . . 11 ran (𝑥 ∈ (ℕ0 ∩ (ℤ‘(𝑛 + 1))) ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) = ran ((ℕ0 ∩ (ℤ‘(𝑛 + 1))) × {0})
41 peano2nn0 9342 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ0)
42 nn0z 9399 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
4342peano2zd 9505 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℤ)
4443uzidd 9670 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ (ℤ‘(𝑛 + 1)))
4541, 44elind 3359 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ (ℕ0 ∩ (ℤ‘(𝑛 + 1))))
46 elex2 2789 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ (ℕ0 ∩ (ℤ‘(𝑛 + 1))) → ∃𝑤 𝑤 ∈ (ℕ0 ∩ (ℤ‘(𝑛 + 1))))
47 rnxpm 5117 . . . . . . . . . . . 12 (∃𝑤 𝑤 ∈ (ℕ0 ∩ (ℤ‘(𝑛 + 1))) → ran ((ℕ0 ∩ (ℤ‘(𝑛 + 1))) × {0}) = {0})
4845, 46, 473syl 17 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → ran ((ℕ0 ∩ (ℤ‘(𝑛 + 1))) × {0}) = {0})
4940, 48eqtrid 2251 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ran (𝑥 ∈ (ℕ0 ∩ (ℤ‘(𝑛 + 1))) ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) = {0})
5032, 49eqtrid 2251 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0})
5150ad2antlr 489 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0})
52 eqidd 2207 . . . . . . . 8 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))))
53 imaeq1 5022 . . . . . . . . . . 11 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → (𝑎 “ (ℤ‘(𝑛 + 1))) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))))
5453eqeq1d 2215 . . . . . . . . . 10 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ↔ ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0}))
55 fveq1 5582 . . . . . . . . . . . . . . 15 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → (𝑎𝑘) = ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘))
56 elfznn0 10243 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
57 eleq1w 2267 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘 → (𝑥 ∈ (0...𝑛) ↔ 𝑘 ∈ (0...𝑛)))
58 fveq2 5583 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘 → (𝑓𝑥) = (𝑓𝑘))
5957, 58ifbieq1d 3594 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑘 → if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0))
60 eqid 2206 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))
61 vex 2776 . . . . . . . . . . . . . . . . . . . 20 𝑓 ∈ V
62 vex 2776 . . . . . . . . . . . . . . . . . . . 20 𝑘 ∈ V
6361, 62fvex 5603 . . . . . . . . . . . . . . . . . . 19 (𝑓𝑘) ∈ V
6463, 7ifex 4537 . . . . . . . . . . . . . . . . . 18 if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0) ∈ V
6559, 60, 64fvmpt 5663 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0))
6656, 65syl 14 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0))
67 iftrue 3577 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...𝑛) → if(𝑘 ∈ (0...𝑛), (𝑓𝑘), 0) = (𝑓𝑘))
6866, 67eqtrd 2239 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...𝑛) → ((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0))‘𝑘) = (𝑓𝑘))
6955, 68sylan9eq 2259 . . . . . . . . . . . . . 14 ((𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) = (𝑓𝑘))
7069oveq1d 5966 . . . . . . . . . . . . 13 ((𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝑧𝑘)) = ((𝑓𝑘) · (𝑧𝑘)))
7170sumeq2dv 11723 . . . . . . . . . . . 12 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘)))
7271mpteq2dv 4139 . . . . . . . . . . 11 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))))
7372eqeq2d 2218 . . . . . . . . . 10 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘)))))
7454, 73anbi12d 473 . . . . . . . . 9 (𝑎 = (𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))))))
7574rspcev 2878 . . . . . . . 8 (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) ∈ ((𝑆 ∪ {0}) ↑𝑚0) ∧ (((𝑥 ∈ ℕ0 ↦ if(𝑥 ∈ (0...𝑛), (𝑓𝑥), 0)) “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
7631, 51, 52, 75syl12anc 1248 . . . . . . 7 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
77 eqeq1 2213 . . . . . . . . 9 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
7877anbi2d 464 . . . . . . . 8 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
7978rexbidv 2508 . . . . . . 7 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
8076, 79syl5ibrcom 157 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) ∧ 𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
8180rexlimdva 2624 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝑛 ∈ ℕ0) → (∃𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
8281reximdva 2609 . . . 4 (𝑆 ⊆ ℂ → (∃𝑛 ∈ ℕ0𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘))) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
8382imdistani 445 . . 3 ((𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑓 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑓𝑘) · (𝑧𝑘)))) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
841, 83sylbi 121 . 2 (𝐹 ∈ (Poly‘𝑆) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
85 simpr 110 . . . . . 6 (((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
8685reximi 2604 . . . . 5 (∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
8786reximi 2604 . . . 4 (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
8887anim2i 342 . . 3 ((𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
89 elply 15250 . . 3 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
9088, 89sylibr 134 . 2 ((𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))) → 𝐹 ∈ (Poly‘𝑆))
9184, 90impbii 126 1 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  DECID wdc 836   = wceq 1373  wex 1516  wcel 2177  wrex 2486  Vcvv 2773  cun 3165  cin 3166  wss 3167  ifcif 3572  {csn 3634  cmpt 4109   × cxp 4677  ran crn 4680  cima 4682  wf 5272  cfv 5276  (class class class)co 5951  𝑚 cmap 6742  cc 7930  0cc0 7932  1c1 7933   + caddc 7935   · cmul 7937  0cn0 9302  cz 9379  cuz 9655  ...cfz 10137  cexp 10690  Σcsu 11708  Polycply 15244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-map 6744  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-n0 9303  df-z 9380  df-uz 9656  df-fz 10138  df-seqfrec 10600  df-sumdc 11709  df-ply 15246
This theorem is referenced by:  plyadd  15267  plymul  15268  plyco  15275  dvply2g  15282
  Copyright terms: Public domain W3C validator