Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pw1map GIF version

Theorem pw1map 16320
Description: Mapping between (𝒫 1o𝑚 𝐴) and subsets of 𝐴. (Contributed by Jim Kingdon, 9-Jan-2026.)
Hypothesis
Ref Expression
pw1map.f 𝐹 = (𝑠 ∈ (𝒫 1o𝑚 𝐴) ↦ {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
Assertion
Ref Expression
pw1map (𝐴𝑉𝐹:(𝒫 1o𝑚 𝐴)–1-1-onto→𝒫 𝐴)
Distinct variable groups:   𝐴,𝑠,𝑧   𝑉,𝑠,𝑧
Allowed substitution hints:   𝐹(𝑧,𝑠)

Proof of Theorem pw1map
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pw1map.f . 2 𝐹 = (𝑠 ∈ (𝒫 1o𝑚 𝐴) ↦ {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
2 ssrab2 3309 . . . 4 {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ⊆ 𝐴
3 elpw2g 4239 . . . 4 (𝐴𝑉 → ({𝑧𝐴 ∣ (𝑠𝑧) = 1o} ∈ 𝒫 𝐴 ↔ {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ⊆ 𝐴))
42, 3mpbiri 168 . . 3 (𝐴𝑉 → {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ∈ 𝒫 𝐴)
54adantr 276 . 2 ((𝐴𝑉𝑠 ∈ (𝒫 1o𝑚 𝐴)) → {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ∈ 𝒫 𝐴)
6 fmelpw1o 7428 . . . . 5 if(𝑢𝑤, 1o, ∅) ∈ 𝒫 1o
76a1i 9 . . . 4 (((𝐴𝑉𝑤 ∈ 𝒫 𝐴) ∧ 𝑢𝐴) → if(𝑢𝑤, 1o, ∅) ∈ 𝒫 1o)
87fmpttd 5789 . . 3 ((𝐴𝑉𝑤 ∈ 𝒫 𝐴) → (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)):𝐴⟶𝒫 1o)
9 1oex 6568 . . . . . 6 1o ∈ V
109pwex 4266 . . . . 5 𝒫 1o ∈ V
1110a1i 9 . . . 4 ((𝐴𝑉𝑤 ∈ 𝒫 𝐴) → 𝒫 1o ∈ V)
12 simpl 109 . . . 4 ((𝐴𝑉𝑤 ∈ 𝒫 𝐴) → 𝐴𝑉)
1311, 12elmapd 6807 . . 3 ((𝐴𝑉𝑤 ∈ 𝒫 𝐴) → ((𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)) ∈ (𝒫 1o𝑚 𝐴) ↔ (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)):𝐴⟶𝒫 1o))
148, 13mpbird 167 . 2 ((𝐴𝑉𝑤 ∈ 𝒫 𝐴) → (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)) ∈ (𝒫 1o𝑚 𝐴))
15 simplr 528 . . . . . . . . 9 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)))
1615fveq1d 5628 . . . . . . . 8 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → (𝑠𝑧) = ((𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))‘𝑧))
17 eqid 2229 . . . . . . . . 9 (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)) = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))
18 elequ1 2204 . . . . . . . . . 10 (𝑢 = 𝑧 → (𝑢𝑤𝑧𝑤))
1918ifbid 3624 . . . . . . . . 9 (𝑢 = 𝑧 → if(𝑢𝑤, 1o, ∅) = if(𝑧𝑤, 1o, ∅))
20 simpr 110 . . . . . . . . 9 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → 𝑧𝐴)
21 0ex 4210 . . . . . . . . . . 11 ∅ ∈ V
229, 21ifex 4576 . . . . . . . . . 10 if(𝑧𝑤, 1o, ∅) ∈ V
2322a1i 9 . . . . . . . . 9 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → if(𝑧𝑤, 1o, ∅) ∈ V)
2417, 19, 20, 23fvmptd3 5727 . . . . . . . 8 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → ((𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))‘𝑧) = if(𝑧𝑤, 1o, ∅))
2516, 24eqtrd 2262 . . . . . . 7 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → (𝑠𝑧) = if(𝑧𝑤, 1o, ∅))
2625eqeq1d 2238 . . . . . 6 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → ((𝑠𝑧) = 1o ↔ if(𝑧𝑤, 1o, ∅) = 1o))
27 iftrueb01 7404 . . . . . 6 (if(𝑧𝑤, 1o, ∅) = 1o𝑧𝑤)
2826, 27bitr2di 197 . . . . 5 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → (𝑧𝑤 ↔ (𝑠𝑧) = 1o))
2928rabbidva 2787 . . . 4 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) → {𝑧𝐴𝑧𝑤} = {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
30 elpwi 3658 . . . . . . . . 9 (𝑤 ∈ 𝒫 𝐴𝑤𝐴)
31 dfss1 3408 . . . . . . . . 9 (𝑤𝐴 ↔ (𝐴𝑤) = 𝑤)
3230, 31sylib 122 . . . . . . . 8 (𝑤 ∈ 𝒫 𝐴 → (𝐴𝑤) = 𝑤)
33 dfin5 3204 . . . . . . . 8 (𝐴𝑤) = {𝑧𝐴𝑧𝑤}
3432, 33eqtr3di 2277 . . . . . . 7 (𝑤 ∈ 𝒫 𝐴𝑤 = {𝑧𝐴𝑧𝑤})
3534eqeq1d 2238 . . . . . 6 (𝑤 ∈ 𝒫 𝐴 → (𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ↔ {𝑧𝐴𝑧𝑤} = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
3635adantl 277 . . . . 5 ((𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴) → (𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ↔ {𝑧𝐴𝑧𝑤} = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
3736ad2antlr 489 . . . 4 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) → (𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ↔ {𝑧𝐴𝑧𝑤} = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
3829, 37mpbird 167 . . 3 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) → 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
39 simplrl 535 . . . . . 6 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝑠 ∈ (𝒫 1o𝑚 𝐴))
4010a1i 9 . . . . . . 7 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝒫 1o ∈ V)
41 simpll 527 . . . . . . 7 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝐴𝑉)
4240, 41elmapd 6807 . . . . . 6 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → (𝑠 ∈ (𝒫 1o𝑚 𝐴) ↔ 𝑠:𝐴⟶𝒫 1o))
4339, 42mpbid 147 . . . . 5 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝑠:𝐴⟶𝒫 1o)
4443feqmptd 5686 . . . 4 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝑠 = (𝑢𝐴 ↦ (𝑠𝑢)))
45 simpr 110 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
4645eleq2d 2299 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → (𝑢𝑤𝑢 ∈ {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
47 fveqeq2 5635 . . . . . . . . . 10 (𝑧 = 𝑢 → ((𝑠𝑧) = 1o ↔ (𝑠𝑢) = 1o))
4847elrab 2959 . . . . . . . . 9 (𝑢 ∈ {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ↔ (𝑢𝐴 ∧ (𝑠𝑢) = 1o))
4946, 48bitrdi 196 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → (𝑢𝑤 ↔ (𝑢𝐴 ∧ (𝑠𝑢) = 1o)))
5049baibd 928 . . . . . . 7 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → (𝑢𝑤 ↔ (𝑠𝑢) = 1o))
5150ifbid 3624 . . . . . 6 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → if(𝑢𝑤, 1o, ∅) = if((𝑠𝑢) = 1o, 1o, ∅))
5243ffvelcdmda 5769 . . . . . . 7 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → (𝑠𝑢) ∈ 𝒫 1o)
53 pw1if 7406 . . . . . . 7 ((𝑠𝑢) ∈ 𝒫 1o → if((𝑠𝑢) = 1o, 1o, ∅) = (𝑠𝑢))
5452, 53syl 14 . . . . . 6 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → if((𝑠𝑢) = 1o, 1o, ∅) = (𝑠𝑢))
5551, 54eqtr2d 2263 . . . . 5 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → (𝑠𝑢) = if(𝑢𝑤, 1o, ∅))
5655mpteq2dva 4173 . . . 4 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → (𝑢𝐴 ↦ (𝑠𝑢)) = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)))
5744, 56eqtrd 2262 . . 3 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)))
5838, 57impbida 598 . 2 ((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) → (𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)) ↔ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
591, 5, 14, 58f1o2d 6209 1 (𝐴𝑉𝐹:(𝒫 1o𝑚 𝐴)–1-1-onto→𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {crab 2512  Vcvv 2799  cin 3196  wss 3197  c0 3491  ifcif 3602  𝒫 cpw 3649  cmpt 4144  wf 5313  1-1-ontowf1o 5316  cfv 5317  (class class class)co 6000  1oc1o 6553  𝑚 cmap 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1o 6560  df-map 6795
This theorem is referenced by:  pw1mapen  16321
  Copyright terms: Public domain W3C validator