| Step | Hyp | Ref
| Expression |
| 1 | | pw1map.f |
. 2
⊢ 𝐹 = (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ↦ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) |
| 2 | | ssrab2 3309 |
. . . 4
⊢ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ⊆ 𝐴 |
| 3 | | elpw2g 4239 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ({𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ∈ 𝒫 𝐴 ↔ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ⊆ 𝐴)) |
| 4 | 2, 3 | mpbiri 168 |
. . 3
⊢ (𝐴 ∈ 𝑉 → {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ∈ 𝒫 𝐴) |
| 5 | 4 | adantr 276 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑠 ∈ (𝒫 1o
↑𝑚 𝐴)) → {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ∈ 𝒫 𝐴) |
| 6 | | fmelpw1o 7428 |
. . . . 5
⊢ if(𝑢 ∈ 𝑤, 1o, ∅) ∈ 𝒫
1o |
| 7 | 6 | a1i 9 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑤 ∈ 𝒫 𝐴) ∧ 𝑢 ∈ 𝐴) → if(𝑢 ∈ 𝑤, 1o, ∅) ∈ 𝒫
1o) |
| 8 | 7 | fmpttd 5789 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑤 ∈ 𝒫 𝐴) → (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅)):𝐴⟶𝒫
1o) |
| 9 | | 1oex 6568 |
. . . . . 6
⊢
1o ∈ V |
| 10 | 9 | pwex 4266 |
. . . . 5
⊢ 𝒫
1o ∈ V |
| 11 | 10 | a1i 9 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑤 ∈ 𝒫 𝐴) → 𝒫 1o ∈
V) |
| 12 | | simpl 109 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑤 ∈ 𝒫 𝐴) → 𝐴 ∈ 𝑉) |
| 13 | 11, 12 | elmapd 6807 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑤 ∈ 𝒫 𝐴) → ((𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅)) ∈ (𝒫
1o ↑𝑚 𝐴) ↔ (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅)):𝐴⟶𝒫
1o)) |
| 14 | 8, 13 | mpbird 167 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑤 ∈ 𝒫 𝐴) → (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅)) ∈ (𝒫
1o ↑𝑚 𝐴)) |
| 15 | | simplr 528 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) |
| 16 | 15 | fveq1d 5628 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → (𝑠‘𝑧) = ((𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))‘𝑧)) |
| 17 | | eqid 2229 |
. . . . . . . . 9
⊢ (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅)) = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅)) |
| 18 | | elequ1 2204 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑧 → (𝑢 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤)) |
| 19 | 18 | ifbid 3624 |
. . . . . . . . 9
⊢ (𝑢 = 𝑧 → if(𝑢 ∈ 𝑤, 1o, ∅) = if(𝑧 ∈ 𝑤, 1o, ∅)) |
| 20 | | simpr 110 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
| 21 | | 0ex 4210 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
| 22 | 9, 21 | ifex 4576 |
. . . . . . . . . 10
⊢ if(𝑧 ∈ 𝑤, 1o, ∅) ∈
V |
| 23 | 22 | a1i 9 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → if(𝑧 ∈ 𝑤, 1o, ∅) ∈
V) |
| 24 | 17, 19, 20, 23 | fvmptd3 5727 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → ((𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))‘𝑧) = if(𝑧 ∈ 𝑤, 1o, ∅)) |
| 25 | 16, 24 | eqtrd 2262 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → (𝑠‘𝑧) = if(𝑧 ∈ 𝑤, 1o, ∅)) |
| 26 | 25 | eqeq1d 2238 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → ((𝑠‘𝑧) = 1o ↔ if(𝑧 ∈ 𝑤, 1o, ∅) =
1o)) |
| 27 | | iftrueb01 7404 |
. . . . . 6
⊢ (if(𝑧 ∈ 𝑤, 1o, ∅) = 1o
↔ 𝑧 ∈ 𝑤) |
| 28 | 26, 27 | bitr2di 197 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) ∧ 𝑧 ∈ 𝐴) → (𝑧 ∈ 𝑤 ↔ (𝑠‘𝑧) = 1o)) |
| 29 | 28 | rabbidva 2787 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) → {𝑧 ∈ 𝐴 ∣ 𝑧 ∈ 𝑤} = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) |
| 30 | | elpwi 3658 |
. . . . . . . . 9
⊢ (𝑤 ∈ 𝒫 𝐴 → 𝑤 ⊆ 𝐴) |
| 31 | | dfss1 3408 |
. . . . . . . . 9
⊢ (𝑤 ⊆ 𝐴 ↔ (𝐴 ∩ 𝑤) = 𝑤) |
| 32 | 30, 31 | sylib 122 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝒫 𝐴 → (𝐴 ∩ 𝑤) = 𝑤) |
| 33 | | dfin5 3204 |
. . . . . . . 8
⊢ (𝐴 ∩ 𝑤) = {𝑧 ∈ 𝐴 ∣ 𝑧 ∈ 𝑤} |
| 34 | 32, 33 | eqtr3di 2277 |
. . . . . . 7
⊢ (𝑤 ∈ 𝒫 𝐴 → 𝑤 = {𝑧 ∈ 𝐴 ∣ 𝑧 ∈ 𝑤}) |
| 35 | 34 | eqeq1d 2238 |
. . . . . 6
⊢ (𝑤 ∈ 𝒫 𝐴 → (𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ↔ {𝑧 ∈ 𝐴 ∣ 𝑧 ∈ 𝑤} = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 36 | 35 | adantl 277 |
. . . . 5
⊢ ((𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴) → (𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ↔ {𝑧 ∈ 𝐴 ∣ 𝑧 ∈ 𝑤} = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 37 | 36 | ad2antlr 489 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) → (𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ↔ {𝑧 ∈ 𝐴 ∣ 𝑧 ∈ 𝑤} = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 38 | 29, 37 | mpbird 167 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) → 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) |
| 39 | | simplrl 535 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → 𝑠 ∈ (𝒫 1o
↑𝑚 𝐴)) |
| 40 | 10 | a1i 9 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → 𝒫
1o ∈ V) |
| 41 | | simpll 527 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → 𝐴 ∈ 𝑉) |
| 42 | 40, 41 | elmapd 6807 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ↔ 𝑠:𝐴⟶𝒫
1o)) |
| 43 | 39, 42 | mpbid 147 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → 𝑠:𝐴⟶𝒫
1o) |
| 44 | 43 | feqmptd 5686 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → 𝑠 = (𝑢 ∈ 𝐴 ↦ (𝑠‘𝑢))) |
| 45 | | simpr 110 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) |
| 46 | 45 | eleq2d 2299 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → (𝑢 ∈ 𝑤 ↔ 𝑢 ∈ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 47 | | fveqeq2 5635 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑢 → ((𝑠‘𝑧) = 1o ↔ (𝑠‘𝑢) = 1o)) |
| 48 | 47 | elrab 2959 |
. . . . . . . . 9
⊢ (𝑢 ∈ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o} ↔ (𝑢 ∈ 𝐴 ∧ (𝑠‘𝑢) = 1o)) |
| 49 | 46, 48 | bitrdi 196 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → (𝑢 ∈ 𝑤 ↔ (𝑢 ∈ 𝐴 ∧ (𝑠‘𝑢) = 1o))) |
| 50 | 49 | baibd 928 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → (𝑢 ∈ 𝑤 ↔ (𝑠‘𝑢) = 1o)) |
| 51 | 50 | ifbid 3624 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → if(𝑢 ∈ 𝑤, 1o, ∅) = if((𝑠‘𝑢) = 1o, 1o,
∅)) |
| 52 | 43 | ffvelcdmda 5769 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → (𝑠‘𝑢) ∈ 𝒫
1o) |
| 53 | | pw1if 7406 |
. . . . . . 7
⊢ ((𝑠‘𝑢) ∈ 𝒫 1o →
if((𝑠‘𝑢) = 1o,
1o, ∅) = (𝑠‘𝑢)) |
| 54 | 52, 53 | syl 14 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → if((𝑠‘𝑢) = 1o, 1o, ∅) =
(𝑠‘𝑢)) |
| 55 | 51, 54 | eqtr2d 2263 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) ∧ 𝑢 ∈ 𝐴) → (𝑠‘𝑢) = if(𝑢 ∈ 𝑤, 1o, ∅)) |
| 56 | 55 | mpteq2dva 4173 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → (𝑢 ∈ 𝐴 ↦ (𝑠‘𝑢)) = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) |
| 57 | 44, 56 | eqtrd 2262 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) → 𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅))) |
| 58 | 38, 57 | impbida 598 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑠 ∈ (𝒫 1o
↑𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) → (𝑠 = (𝑢 ∈ 𝐴 ↦ if(𝑢 ∈ 𝑤, 1o, ∅)) ↔ 𝑤 = {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o})) |
| 59 | 1, 5, 14, 58 | f1o2d 6209 |
1
⊢ (𝐴 ∈ 𝑉 → 𝐹:(𝒫 1o
↑𝑚 𝐴)–1-1-onto→𝒫 𝐴) |