Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pw1map GIF version

Theorem pw1map 16073
Description: Mapping between (𝒫 1o𝑚 𝐴) and subsets of 𝐴. (Contributed by Jim Kingdon, 9-Jan-2026.)
Hypothesis
Ref Expression
pw1map.f 𝐹 = (𝑠 ∈ (𝒫 1o𝑚 𝐴) ↦ {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
Assertion
Ref Expression
pw1map (𝐴𝑉𝐹:(𝒫 1o𝑚 𝐴)–1-1-onto→𝒫 𝐴)
Distinct variable groups:   𝐴,𝑠,𝑧   𝑉,𝑠,𝑧
Allowed substitution hints:   𝐹(𝑧,𝑠)

Proof of Theorem pw1map
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pw1map.f . 2 𝐹 = (𝑠 ∈ (𝒫 1o𝑚 𝐴) ↦ {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
2 ssrab2 3282 . . . 4 {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ⊆ 𝐴
3 elpw2g 4208 . . . 4 (𝐴𝑉 → ({𝑧𝐴 ∣ (𝑠𝑧) = 1o} ∈ 𝒫 𝐴 ↔ {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ⊆ 𝐴))
42, 3mpbiri 168 . . 3 (𝐴𝑉 → {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ∈ 𝒫 𝐴)
54adantr 276 . 2 ((𝐴𝑉𝑠 ∈ (𝒫 1o𝑚 𝐴)) → {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ∈ 𝒫 𝐴)
6 fmelpw1o 7378 . . . . 5 if(𝑢𝑤, 1o, ∅) ∈ 𝒫 1o
76a1i 9 . . . 4 (((𝐴𝑉𝑤 ∈ 𝒫 𝐴) ∧ 𝑢𝐴) → if(𝑢𝑤, 1o, ∅) ∈ 𝒫 1o)
87fmpttd 5748 . . 3 ((𝐴𝑉𝑤 ∈ 𝒫 𝐴) → (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)):𝐴⟶𝒫 1o)
9 1oex 6523 . . . . . 6 1o ∈ V
109pwex 4235 . . . . 5 𝒫 1o ∈ V
1110a1i 9 . . . 4 ((𝐴𝑉𝑤 ∈ 𝒫 𝐴) → 𝒫 1o ∈ V)
12 simpl 109 . . . 4 ((𝐴𝑉𝑤 ∈ 𝒫 𝐴) → 𝐴𝑉)
1311, 12elmapd 6762 . . 3 ((𝐴𝑉𝑤 ∈ 𝒫 𝐴) → ((𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)) ∈ (𝒫 1o𝑚 𝐴) ↔ (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)):𝐴⟶𝒫 1o))
148, 13mpbird 167 . 2 ((𝐴𝑉𝑤 ∈ 𝒫 𝐴) → (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)) ∈ (𝒫 1o𝑚 𝐴))
15 simplr 528 . . . . . . . . 9 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)))
1615fveq1d 5591 . . . . . . . 8 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → (𝑠𝑧) = ((𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))‘𝑧))
17 eqid 2206 . . . . . . . . 9 (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)) = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))
18 elequ1 2181 . . . . . . . . . 10 (𝑢 = 𝑧 → (𝑢𝑤𝑧𝑤))
1918ifbid 3597 . . . . . . . . 9 (𝑢 = 𝑧 → if(𝑢𝑤, 1o, ∅) = if(𝑧𝑤, 1o, ∅))
20 simpr 110 . . . . . . . . 9 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → 𝑧𝐴)
21 0ex 4179 . . . . . . . . . . 11 ∅ ∈ V
229, 21ifex 4541 . . . . . . . . . 10 if(𝑧𝑤, 1o, ∅) ∈ V
2322a1i 9 . . . . . . . . 9 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → if(𝑧𝑤, 1o, ∅) ∈ V)
2417, 19, 20, 23fvmptd3 5686 . . . . . . . 8 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → ((𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))‘𝑧) = if(𝑧𝑤, 1o, ∅))
2516, 24eqtrd 2239 . . . . . . 7 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → (𝑠𝑧) = if(𝑧𝑤, 1o, ∅))
2625eqeq1d 2215 . . . . . 6 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → ((𝑠𝑧) = 1o ↔ if(𝑧𝑤, 1o, ∅) = 1o))
27 iftrueb01 7354 . . . . . 6 (if(𝑧𝑤, 1o, ∅) = 1o𝑧𝑤)
2826, 27bitr2di 197 . . . . 5 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) ∧ 𝑧𝐴) → (𝑧𝑤 ↔ (𝑠𝑧) = 1o))
2928rabbidva 2761 . . . 4 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) → {𝑧𝐴𝑧𝑤} = {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
30 elpwi 3630 . . . . . . . . 9 (𝑤 ∈ 𝒫 𝐴𝑤𝐴)
31 dfss1 3381 . . . . . . . . 9 (𝑤𝐴 ↔ (𝐴𝑤) = 𝑤)
3230, 31sylib 122 . . . . . . . 8 (𝑤 ∈ 𝒫 𝐴 → (𝐴𝑤) = 𝑤)
33 dfin5 3177 . . . . . . . 8 (𝐴𝑤) = {𝑧𝐴𝑧𝑤}
3432, 33eqtr3di 2254 . . . . . . 7 (𝑤 ∈ 𝒫 𝐴𝑤 = {𝑧𝐴𝑧𝑤})
3534eqeq1d 2215 . . . . . 6 (𝑤 ∈ 𝒫 𝐴 → (𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ↔ {𝑧𝐴𝑧𝑤} = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
3635adantl 277 . . . . 5 ((𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴) → (𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ↔ {𝑧𝐴𝑧𝑤} = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
3736ad2antlr 489 . . . 4 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) → (𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ↔ {𝑧𝐴𝑧𝑤} = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
3829, 37mpbird 167 . . 3 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅))) → 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
39 simplrl 535 . . . . . 6 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝑠 ∈ (𝒫 1o𝑚 𝐴))
4010a1i 9 . . . . . . 7 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝒫 1o ∈ V)
41 simpll 527 . . . . . . 7 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝐴𝑉)
4240, 41elmapd 6762 . . . . . 6 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → (𝑠 ∈ (𝒫 1o𝑚 𝐴) ↔ 𝑠:𝐴⟶𝒫 1o))
4339, 42mpbid 147 . . . . 5 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝑠:𝐴⟶𝒫 1o)
4443feqmptd 5645 . . . 4 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝑠 = (𝑢𝐴 ↦ (𝑠𝑢)))
45 simpr 110 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
4645eleq2d 2276 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → (𝑢𝑤𝑢 ∈ {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
47 fveqeq2 5598 . . . . . . . . . 10 (𝑧 = 𝑢 → ((𝑠𝑧) = 1o ↔ (𝑠𝑢) = 1o))
4847elrab 2933 . . . . . . . . 9 (𝑢 ∈ {𝑧𝐴 ∣ (𝑠𝑧) = 1o} ↔ (𝑢𝐴 ∧ (𝑠𝑢) = 1o))
4946, 48bitrdi 196 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → (𝑢𝑤 ↔ (𝑢𝐴 ∧ (𝑠𝑢) = 1o)))
5049baibd 925 . . . . . . 7 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → (𝑢𝑤 ↔ (𝑠𝑢) = 1o))
5150ifbid 3597 . . . . . 6 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → if(𝑢𝑤, 1o, ∅) = if((𝑠𝑢) = 1o, 1o, ∅))
5243ffvelcdmda 5728 . . . . . . 7 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → (𝑠𝑢) ∈ 𝒫 1o)
53 pw1if 7356 . . . . . . 7 ((𝑠𝑢) ∈ 𝒫 1o → if((𝑠𝑢) = 1o, 1o, ∅) = (𝑠𝑢))
5452, 53syl 14 . . . . . 6 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → if((𝑠𝑢) = 1o, 1o, ∅) = (𝑠𝑢))
5551, 54eqtr2d 2240 . . . . 5 ((((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) ∧ 𝑢𝐴) → (𝑠𝑢) = if(𝑢𝑤, 1o, ∅))
5655mpteq2dva 4142 . . . 4 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → (𝑢𝐴 ↦ (𝑠𝑢)) = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)))
5744, 56eqtrd 2239 . . 3 (((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) ∧ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) → 𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)))
5838, 57impbida 596 . 2 ((𝐴𝑉 ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ∧ 𝑤 ∈ 𝒫 𝐴)) → (𝑠 = (𝑢𝐴 ↦ if(𝑢𝑤, 1o, ∅)) ↔ 𝑤 = {𝑧𝐴 ∣ (𝑠𝑧) = 1o}))
591, 5, 14, 58f1o2d 6164 1 (𝐴𝑉𝐹:(𝒫 1o𝑚 𝐴)–1-1-onto→𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {crab 2489  Vcvv 2773  cin 3169  wss 3170  c0 3464  ifcif 3575  𝒫 cpw 3621  cmpt 4113  wf 5276  1-1-ontowf1o 5279  cfv 5280  (class class class)co 5957  1oc1o 6508  𝑚 cmap 6748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1o 6515  df-map 6750
This theorem is referenced by:  pw1mapen  16074
  Copyright terms: Public domain W3C validator