![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mnfaddpnf | GIF version |
Description: Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
mnfaddpnf | ⊢ (-∞ +𝑒 +∞) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 8078 | . . 3 ⊢ -∞ ∈ ℝ* | |
2 | pnfxr 8074 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | xaddval 9914 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ +𝑒 +∞) = if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))))) | |
4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ (-∞ +𝑒 +∞) = if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) |
5 | mnfnepnf 8077 | . . . 4 ⊢ -∞ ≠ +∞ | |
6 | ifnefalse 3569 | . . . 4 ⊢ (-∞ ≠ +∞ → if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) |
8 | eqid 2193 | . . . . 5 ⊢ -∞ = -∞ | |
9 | 8 | iftruei 3564 | . . . 4 ⊢ if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) = if(+∞ = +∞, 0, -∞) |
10 | eqid 2193 | . . . . 5 ⊢ +∞ = +∞ | |
11 | 10 | iftruei 3564 | . . . 4 ⊢ if(+∞ = +∞, 0, -∞) = 0 |
12 | 9, 11 | eqtri 2214 | . . 3 ⊢ if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) = 0 |
13 | 7, 12 | eqtri 2214 | . 2 ⊢ if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = 0 |
14 | 4, 13 | eqtri 2214 | 1 ⊢ (-∞ +𝑒 +∞) = 0 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ifcif 3558 (class class class)co 5919 0cc0 7874 + caddc 7877 +∞cpnf 8053 -∞cmnf 8054 ℝ*cxr 8055 +𝑒 cxad 9839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-rnegex 7983 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-xadd 9842 |
This theorem is referenced by: xnegid 9928 xaddcom 9930 xnegdi 9937 xsubge0 9950 xposdif 9951 xrmaxadd 11407 |
Copyright terms: Public domain | W3C validator |